Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (4): 263-271    DOI: 10.11901/1005.3093.2019.397
  研究论文 本期目录 | 过刊浏览 |
非晶Co-W-B/碳布复合电极材料的制备及其电解水催化性能
施嘉伦, 盛敏奇(), 吴琼, 吕凡
苏州大学沙钢钢铁学院 苏州 215137
Preparation of Electrode Materials of Amorphous Co-W-B/Carbon Cloth Composite and their Electro-catalytic Performance for Electrolysis of Water
SHI Jialun, SHENG Minqi(), WU Qiong, LV Fan
School of Iron and Steel, Soochow University, Suzhou 215137, China
引用本文:

施嘉伦, 盛敏奇, 吴琼, 吕凡. 非晶Co-W-B/碳布复合电极材料的制备及其电解水催化性能[J]. 材料研究学报, 2020, 34(4): 263-271.
Jialun SHI, Minqi SHENG, Qiong WU, Fan LV. Preparation of Electrode Materials of Amorphous Co-W-B/Carbon Cloth Composite and their Electro-catalytic Performance for Electrolysis of Water[J]. Chinese Journal of Materials Research, 2020, 34(4): 263-271.

全文: PDF(10724 KB)   HTML
摘要: 

通过湿化学还原在碳布(CC)表面沉积非晶Co-W-B催化活性物质,制备一种自支撑Co-W-B/碳布(Co-W-B/CC)复合电极材料。电化学研究结果表明,Co-W-B/CC材料在NaOH溶液(1 mol/L)中表现出良好的电解水催化性能。制备过程中[WO42-]/([WO42-]+[Co2+])比值为50%的Co-50W-B/CC样品其催化活性最高:10 mA/cm2时的OER过电位为0.394V,OER过程的Tafel斜率为96.8 mV/dec;-10 mA/cm2时的HER过电位为0.098 V,HER过程的Tafel斜率为117.4 mV/dec。对电化学阻抗的分析结果表明,本征催化活性和电化学活性面积两者的提高,使Co-50W-B/CC样品在较低的电流密度下具有与贵金属基材料相近的催化活性。

关键词 复合材料Co-W-B/CC复合电极非晶材料析氧反应析氢反应电催化    
Abstract

Amorphous Co-W-B was deposited on carbon cloth (CC) to fabricate a self-supported Co-W-B/CC composite electrode by using chemical reduction method. Electrochemical analysis show that Co-W-B/CC materials exhibited excellent electrocatalytic performance for electrolysis of water in 1 mol/L NaOH solution. Among others, the Co-50W-B/CC (the ratio of [WO42-]/([WO42-]+[Co2+]) is 50% in the synthesis process) shows the best electrocatalytic activity, i.e. for the Co-50W-B/CC catalyst, when the low overpotential is 0.394 V by ampere density of 10mA/cm2, the corresponding Tafel slope is 96.8 mV/dec for the oxygen evolution reaction (OER), whilst when the overpotential is 0.098 V by ampere density of -10 mA/cm2, the corresponding Tafel slope is 117.4 mV/dec for the hydrogen evolution reaction (HER). EIS analysis result implies that the Co-50W-B/CC possesses nearly the same catalytic activity as the noble metal-based materials at low current density, which can mainly be attributed to both the high intrinsic catalytic activity and the large electrochemical active area.

Key wordscomposite    Co-W-B/CC    composite electrode    amorphous material    oxygen evolution reaction (OER)    hydrogen evolution reaction (HER)    electrocatalysis
收稿日期: 2019-08-15     
ZTFLH:  TB322  
基金资助:国家重点研发计划(No. 2018YFE0306105);国家自然科学基金(No. 51504104)
作者简介: 施嘉伦,男,1996年生,硕士生
图1  CC和Co-50W-B/CC的SEM照片、(c-inset) Co-50W-B/CC的EDX能谱以及Co-50W-B/CC的表面元素分布
图2  χW%值([WO42-]/([WO42-]+[Co2+])摩尔百分比)对Co-W-B催化活性物质中元素含量的影响和 CC以及不同Co-W-B/CC样品的XRD衍射图谱
图3  Co-66W-B/CC和Co-75W-B/CC的SEM照片
图4  不同Co-W-B/CC样品的LSV曲线(嵌入图为1.50~1.75VvsRHE电位范围的局部放大图)、Co-50W-B/CC、CC、Co-B/CC和RuO2样品的LSV曲线、 Co-50W-B/CC、CC、Co-B/CC和RuO2样品的Tafel斜率、不同Co-W-B/CC样品和Co-50W-B/CC、Co-B/CC和RuO2样品的EIS曲线以及不同样品的Cdl-OER值和j0-real-OER值
图5  不同Co-W-B/CC样品的LSV曲线(嵌入图为-0.10~-0.30VvsRHE电位范围的局部放大图)、Co-50W-B/CC、CC、Co-B/CC和Pt/C样品的LSV曲线、Co-50W-B/CC、CC、Co-B/CC和Pt/C样品的Tafel斜率、不同Co-W-B/CC样品的EIS曲线、Co-50W-B/CC、Co-B/CC和Pt/C样品的EIS曲线以及不同样品的Cdl-HER值和j0-real-HER值
图6  Co-50W-B/CC在OER过程中循环1000次前后的LSV曲线、Co-50W-B/CC在HER过程中循环1000次前后的LSV曲线、Co-50W-B/CC在30 mA/cm2和-30 mA/cm2下的V-t曲线以及Co-50W-B/CC(+)??Co-50W-B/C(-)与RuO2(+)??Pt/C(-)的全解水活性比较
[1] Wang J, Wei Z Z, Wang H Y. CoOx-carbon nanotubes hybrids integrated on carbon cloth as a new generation of 3D porous hydrogen evolution promoters [J]. Journal of Materials Chemistry A, 2017, 5(21): 10510
[2] Zhang Y, Shao Q, Long S. Cobalt-molybdenum nanosheet arrays as highly efficient and stable earth-abundant electrocatalysts for overall water splitting [J]. Nano Energy, 2018, 45: 448
[3] Chen Z L, Wu R B, Liu Y. Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction [J]. Advanced Materials, 2018, 30(30): 1802011
doi: 10.1002/adma.201802011 pmid: 29888482
[4] Zou X X, Zhang Y. Chemlnform abstract: Noble metal-free hydrogen evolution catalysts for water splitting [J]. Royal Society of Chemistry, 2015, 44(36): 5150
[5] Debanjian D, Nanda K. One-step, integrated fabrication of Co2P nanoparticles encapsulated N, P dual-doped CNTs for highly advanced total water splitting [J]. Nano Energy, 2016, 30:303
[6] Sheng J F, Ma C A, Zhang C. Preparation and electro-catalytic property of nano-crystallinetungsten carbide-cobalt-nickel composite [J]. ACTA Chimica Sinica, 2018, 66(18): 2087
[6] (盛江峰, 马淳安, 张诚. 纳米晶WC-Co-Ni复合材料的制备及其电催化性能 [J]. 化学学报, 2008, 66(18): 2087)
[7] Fei H, Wang H Y, Shen X C. Designing highly efficient and long-term durable electrocatalyst for oxygen evolution by coupling B and P into amorphous porous NiFe-based material [J]. Small, 2019, 15(28): 1901020
doi: 10.1002/smll.201901020 pmid: 31148404
[8] Wang S, He P, Xie Z W. Tunable nanocotton-like amorphous ternary Ni-Co-B: A highly efficient catalyst for enhanced oxygen evolution reaction [J]. Electrochimica Acta, 2019, 296: 644
[9] Sheng M Q, Wu Q, Wang Y. Network-like porous Co-Ni-B grown on carbon cloth as efficient and stable catalytic electrodes for hydrogen evolution [J]. Electrochemistry Communications, 2018, 93: 104
[10] Ji X Q, Ma M, Ge R X. WO3 Nanoarray: An efficient electrochemical oxygen evolution catalyst electrode operating in alkaline solution [J]. Inorganic Chemistry, 2017, 56(24): 14743
doi: 10.1021/acs.inorgchem.7b02552 pmid: 29199821
[11] Shang X, Rao Y, Lu S S. Novel WS2/WO3 heterostructured nanosheets as efficient electrocatalyst for hydrogen evolution reaction [J]. Materials Chemistry and Physics, 2017, 197: 123
[12] Weng B C, Grice C R, Meng W W. Metal-organic framework-derived CoWP@C composite nanowire electrocatalyst for efficient water splitting [J]. ACS Energy Letters, 2018, 3(6): 1434
[13] Elias L, Scott K, Hegde A C. Electrolytic synthesis and characterization of electrocatalytic Ni-W alloy [J]. Journal of Materials Engineering and Performance, 2015, 24(11): 4182
[14] Li C, Wang D, Wang Y. Enhanced catalytic activity of the nanostructured Co-W-B film catalysts for hydrogen evolution from the hydrolysis of ammonia borane [J]. Journal of Colloid and Interface Science, 2018, 524: 25
doi: 10.1016/j.jcis.2018.03.085 pmid: 29627669
[15] Pi M Y, Wu T L, Zhang D K. Self-supported three-dimensional mesoporous semimetallic WP2 nanowire arrays on carbon cloth as a flexible cathode for efficient hydrogen evolution [J]. Nanoscale, 2016, 8(47): 19779
doi: 10.1039/c6nr05747k pmid: 27874138
[16] Luo Z M, Tan C L, Lai Z C. A simple electrochemical method for conversion of Pt wires to Pt concave icosahedra and nanocubes on carbon paper for electrocatalytic hydrogen evolution [J]. Science China Materials, 2019, 62(1): 115
[16] (罗志敏, 谭超良, 赖壮钗. 电化学方法把铂丝转化到碳布上形成铂二十面体和纳米立方体并用于电催化产氢 [J]. 中国科学: 材料科学, 2019, 62(1): 115)
[17] Hu F, Zhu S L, Chen S M. Amorphous metallic NiFeP: A conductive bulk material achieving high activity for oxygen evolution reaction in both Alkaline and acidic media [J]. Advanced Materials, 2017, 29(32): 1606570
doi: 10.1002/adma.201606570 pmid: 28639333
[18] Zou X, Liu Y P, Li G D. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis [J]. Advanced Materials, 2017, 29(32): 1700404
doi: 10.1002/adma.201700404 pmid: 28370573
[19] Wang Y, Sheng M Q, Weng W P. Electrocatalytic hydrogen evolution reaction on electrodeposited amorphous Co-W alloy coatings in alkaline solutions [J]. Chinese Journal of Materials Research, 2017, 31(10): 774
[19] (王玉, 盛敏奇, 翁文凭. 电沉积非晶态Co-W合金镀层在碱性溶液中的电催化析氢研究 [J]. 材料研究学报, 2017, 31(10): 774)
[20] Liao F, Shen W, Sun Y Y. Nanosponge Pt modified graphene nanocomposites using silicon monoxides as a reducing agent: High efficient electrocatalysts for hydrogen evolution [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 15238
[21] Guo X M, Qian Y, Zhang Wei. Amorphous Ni-P with hollow dendritic architecture as bifunctional electrocatalyst for overall water splitting [J]. Journal of Alloys and Compounds, 2018, 765: 835
[22] SahaSoumen, Ganguli Ashok K. FeCoNi alloy as noble metal-free electrocatalyst for oxygen evolution reaction (OER) [J]. ChemistrySelect, 2017, 2(4): 1630
[23] Rashid J, Parveen N, HaqTanveeru. g-C3N4/CeO2/Fe3O4 ternary composite as an efficient bifunctional catalyst for overall water splitting [J]. Chemcatcem, 2018, 10(24): 5587
[24] Sun X H, Shao Q, Pi Y C. A general approach to synthesise ultrathin NiM (M=Fe, Co, Mn) hydroxide nanosheets as high-performance low-cost electrocatalysts for overall water splitting [J]. Journal of Materials Chemistry A, 2017, 5(17): 7769
[25] Wu F, Guo X W, Hao G Z. Electrodeposition of sulfur-engineered amorphous nickel hydroxides on MIL-53(Fe) nanosheets to accelerate the oxygen evolution reaction [J]. Nanoscale, 2019,11(31): 14785
doi: 10.1039/c9nr03430g pmid: 31353385
[26] Chen H Y, Ouyang S X, Zhao M. Synergistic activity of Co and Fe in amorphous Cox-Fe-B catalyst for efficient oxygen evolution reaction [J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40333
doi: 10.1021/acsami.7b13939 pmid: 29111638
[27] Zhang S L, Zhai D, Sun T T. In situ embedding Co9S8 into nitrogen and sulfur codoped hollow porous carbon as a bifunctional electrocatalyst for oxygen reduction and hydrogenevolution reactions [J]. Applied Catalysis B-Environmental, 2019, 254: 186
[28] Wang L, Cao J H, Lei C J. Strongly coupled 3D N‑doped MoO2/Ni3S2 hybrid for high currentdensity hydrogen evolution electrocatalysis and biomassupgrading [J]. ACS Applied Materials & Interfaces, 2019, 31305069
[29] Zhang W Y, Li W T, Li Y X. One-step synthesis of nickel oxide/nickel carbide/graphene composite for efficient dye-sensitized photocatalytic H2 evolution [J]. Catalysis Today, 2019, 33: 326
[30] Yang H Y, Chen Z L, Hao W J. Catalyzing overall water splitting at an ultralow cell voltage of 1.42 V via coupled Co-doped NiO nanosheets with carbon [J]. Applied Catalysis B-Environmental, 2019, 252: 214
[31] Chen H Y, Song L Z, Ouyang S X. Co and Fe codoped WO2.72 as alkaline-solution-available oxygen evolution reaction catalyst to construct photovoltaic water splitting system with solar-to-hydrogen efficiency of 16.9% [J]. Advanced Science, 2019, 1900465
doi: 10.1002/advs.201900465 pmid: 31453064
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 李海龙, 牟娟, 王媛媛, 葛绍璠, 刘春明, 张海峰, 朱正旺. MnNiCoCrFe多孔高熵合金的电催化析氧性能[J]. 材料研究学报, 2023, 37(5): 332-340.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.