Please wait a minute...
材料研究学报  2020, Vol. 34 Issue (5): 392-400    DOI: 10.11901/1005.3093.2019.462
  研究论文 本期目录 | 过刊浏览 |
循环流速对磁化铜电解过程的影响
姚夏妍1(), 赵芸芸1, 王军辉2, 牛永胜1, 鲁兴武1
1.西北矿冶研究院 甘肃省有色金属冶炼新工艺及伴生稀散金属高效综合利用重点实验室 白银 730900
2.白银有色集团股份有限公司 白银 730900
Effect of Cyclical Flow Velocity on Magnetized Copper Electrolysis Process
YAO Xiayan1(), ZHAO Yunyun1, WANG Junhui2, NIU Yongsheng1, LU Xingwu1
1.Northwest Research Institute of Mining and Metallurgy,Key Laboratory of New Process for Non-ferrous Metal Smelting and Rare Metal High Utilization Efficiency in Gansu Province, Baiyin 730900, China
2.Baiyin Nonferrous Group Co. Ltd. , Baiyin 730900, China
引用本文:

姚夏妍, 赵芸芸, 王军辉, 牛永胜, 鲁兴武. 循环流速对磁化铜电解过程的影响[J]. 材料研究学报, 2020, 34(5): 392-400.
Xiayan YAO, Yunyun ZHAO, Junhui WANG, Yongsheng NIU, Xingwu LU. Effect of Cyclical Flow Velocity on Magnetized Copper Electrolysis Process[J]. Chinese Journal of Materials Research, 2020, 34(5): 392-400.

全文: PDF(5816 KB)   HTML
摘要: 

用磁场的协同作用改善Cu2+的扩散性能和强化铜电解的自净化过程,使阴极铜的质量提高。从离子磁性和离子水合作用的角度,进行不同流速下强磁场磁化铜电解液的实验,研究了洛伦兹力和磁场梯度力对Cu2+扩散性能、杂质离子浓度和阴极铜表观质量的影响,分析了垂直取向磁场和水平取向磁场强化铜电解的机理。结果表明:磁场能强化对流、减弱氢键缔合程度、降低离子水合作用、提高体系能量、促进Cu2+扩散性能和砷锑铋等杂质离子的沉降速度,从而提高电解液的清晰度和增强阴极铜表观质量;但是,磁场增加微气泡和溶解氧量并随着循环流速的提高而增大,使电解液表面张力增大而导致磁场的协同作用失效。在磁化铜电解过程中,存在一个提高阴极铜质量的最佳循环流速。

关键词 金属材料磁化电解强磁场铜电解阴极铜    
Abstract

In order to improve the quality of cathode copper, the intense magnetic field was used to enhance the diffusion of Cu2+ and the self-purification process of copper electrolysis. From the point of view of ionic magnetism and ionic hydration, experiments on magnetized copper electrolysis at different flow velocity were carried out. The effect of Lorentz force and magnetic field gradient force on the diffusion properties, impurity ion concentration and apparent quality of cathode copper was investigated. The mechanism of copper electrolysis strengthened by vertical orientation magnetic field and horizontal orientation magnetic field was respectively analyzed. Results show that magnetic field can strengthen the convection, weaken the hydrogen bonding, reduce the ion hydration and increase the energy of the system. Besides, the diffusion of Cu2+ and the deposition rate of impurity ions such as As, Sb and Bi were also increased, which could improve the clarity of electrolyte and the apparent quality of cathode copper. On the other hand, the dissolved oxygen, microbubbles and surface tension of electrolyte increased with the increase of cyclical flow velocity, so leading to the failure of magnetic field synergy. There is an optimum cyclical velocity to improve the quality of cathode copper in the process of magnetized copper electrolysis.

Key wordsmetallic materials    magnetized electrolysis    intense magnetic field    copper electrolysis    cathode copper
收稿日期: 2019-09-30     
ZTFLH:  TF111  
基金资助:甘肃省工业绿色低碳转型升级研究课题(GGLD-2019-28);白银市2019年科技计划(2019-1-12G)
作者简介: 姚夏妍,男,1988年生,硕士
图1  试验装置示意图
ElementsCuZnFeSbBiNiAsCa
Mass fraction/%99.5810.0060.0410.0430.0160.0240.0590.023
表1  阳极铜主要化学成分分析结果(%,质量分数)
ElementsCuAsSbBiNiFeZnCaH2SO4
Concentration/mol·L-10.6140.2020.0020.0010.2130.0190.0090.0101.633
表2  电解液的主要成分
图2  不同取向的磁场循环流速对铜/酸的影响
图3  施加不同取向磁场循环流速对杂质离子浓度的影响
ElementsCuAsSbBiZnCaPb
Mass fraction/%1.1517.3544.878.960.0280.360.21
表3  漂浮阳极泥的化学成分
图4  洛伦兹力影响离子水合作用的理论模型
图5  施加垂直取向磁场循环流速对阴极铜表观质量的影响
图6  循环流速影响磁化铜电解过程的机理
图7  磁场梯度力影响离子水合作用的理论模型
图8  施加不同取向磁场循环流速对粘度和表面张力的影响
图9  施加平行取向磁场循环流速对阴极铜表观质量的影响
[1] Ninomiya Y, Sasaki H, Kamiko M, et al. Passivation of Cu-Sb anodes in H2SO4-CuSO4 aqueous solution observed by the channel flow double electrode method and optical microscopy [J]. Electrochim. Acta, 2019, 309: 300
[2] Zeng W Z, Free M L, Wang S J. Studies of anode slime sintering/coalescence and its effects on anode slime adhesion and cathode purity in copper electrorefining [J]. J. Electrochem. Soc., 2016, 163: E14
[3] Shabani A, Hoseinpur A, Yoozbashizadeh H, et al. As, Sb, and Fe removal from industrial copper electrolyte by solvent displacement crystallisation technique [J]. Can. Metall. Quart., 2019, 58: 253
[4] Artzer A, Moats M, Bender J. Removal of antimony and bismuth from copper electrorefining electrolyte: Part I—A Review [J]. JOM, 2018, 70: 2033
[5] Mitra A, Mallik M, Sengupta S, et al. Effect of anodic passivation at high applied potential difference on the crystal shape and morphology of copper electrodeposits: thermodynamics and kinetics of electrocrystallization [J]. Cryst. Growth Des., 2017, 17: 1539
[6] Moats M S, Wang S, Kim D. A review of the behavior and deportment of lead, bismuth, antimony and arsenic in copper electrorefining [A] T.T. Chen Honorary Symposium on Hydrometallurgy, Ele-ctrometallurgy and Materials Characterization [D]. John Wiley & Sons., Inc. 2012
[7] Luo X, Su L S, Gao H X, et al. Density, viscosity, and N2O solubility of aqueous 2-(Methylamino)ethanol solution [J]. J. Chem, Eng, Data, 2017, 62: 129
[8] Schlesinger M E, King M J, Sole K C, et al. Extractive Metallurgy of Copper [M]. Exeter Devon, U. K. Elsevier, 2011: 389
[9] Jiang L L, Yao X Y, Yu H T, et al. Effect of permanent magnetic field on scale inhibition property of circulating water [J]. Water Sci. Technol., 2017, 76: 1981
[10] Sueptitz R, Tschulik K, Uhlemann M. Effect of high gradient magnetic fields on the anodic behaviour and localized corrosion of iron in sulphuric acid solutions [J]. Corros. Sci., 2011, 53: 3222
[11] Tschulik K, Cierpka C, Gebert A, et al. In situ analysis of three-dimensional electrolyte convection evolving during the electrodeposition of copper in magnetic gradient fields [J]. Anal. Chem., 2011, 83: 3275
[12] Monzon L M A, Coey J M D. Magnetic fields in electrochemistry: the Lorentz force. A mini-review [J]. Electrochem. Commun., 2014, 42: 38
[13] Matsushima H, Ispas A, Bund A, et al. Magnetic field effects on microstructural variation of electrodeposited cobalt films [J]. J. Solid State Electrochem., 2007, 11: 737
[14] Lu Z P. Effects of magnetic fields, solution composition and electrode potential on anodic dissolution and passivation [J]. ECS Trans., 2014, 59: 429
[15] Jiang L L, Yao X Y, Yu H T, et al. Effect of permanent magnetic field on water association in circulating water [J]. Desalinat. Water Treat., 2017, 79: 152
[16] Kalliomäki T, Aji A T, Rintala L, et al. Models for viscosity and density of copper electrorefining electrolytes [J]. Physicochem. Probl. Mineral Process., 2017, 53: 1023
[17] Brandt W. Calculation of intermolecular force constants from polarizabilities [J]. J. Chem. Phys., 1956, 24: 501
[18] Andreev M, De Pablo J J, Chremos A, et al. Influence of ion solvation on the properties of electrolyte solutions [J]. J. Phys. Chem., 2018, 122B: 4029
[19] Boström M, Williams D R M, Ninham B W. Surface tension of electrolytes:  specific ion effects explained by dispersion forces [J]. Langmuir, 2001, 17: 4475
[20] Liang Y X, Chen S L, Guo X Y. The status quo of purification and impurities removal of As,Sb,Bi in copper electrolyte [J]. China Nonferrous Metall., 2009, 38(4): 69
[20] (梁永宣, 陈胜利, 郭学益. 铜电解液中As、Sb、Bi杂质净化研究进展 [J]. 中国有色冶金, 2009, 38(4): 69)
[21] Lu Z P, Huang D L, Yang W. Probing into the effects of a magnetic field on the electrode processes of iron in sulphuric acid solutions with dichromate based on the fundamental electrochemistry kinetics [J]. Corros. Sci., 2005, 47: 1471
[22] Lorenz P B. The specific adsorption isotherms of thiocyanate and hydrogen ions at the free surface of aqueous solutions [J]. J. Phys. Colloid Chem., 1950, 54: 685
[23] Zhang M. Study of the effects of the magnetic field on the anodic dissolution of nickel with In-line digital holography [J]. Int. J. Electrochem. Sci., 2018, 13: 739
[24] Oshikiri Y, Aogaki R, Miura M, et al. Microbubble formation from ionic vacancies in copper anodic dissolution under a high magnetic field [J]. Electrochemistry, 2015, 83: 549
[25] Weissenborn P K, Pugh R J. Surface tension of aqueous solutions of electrolytes: relationship with ion hydration, oxygen solubility, and bubble coalescence [J]. J. Colloid Interface Sci., 1996, 184: 550
[26] Takasu T, Nakamura T, Itou H, et al. Effect of fluid motion of electrolyte on the behaviors of v group elements (As, Sb, Bi) in copper electrorefining under high current density [J]. Shigen to-Sozai, 1999, 115: 841
[27] Petkova E N. Mechanisms of floating slime formation and its removal with the help of sulphur dioxide during the electrorefining of anode copper [J]. Hydrometallurgy, 1997, 46: 277
[28] Chen T T, Dutrizac J E. A mineralogical overview of the behavior of nickel during copper electrorefining [J]. Metall. Trans., 2007, 21B: 229
[29] Yuan B Y, Wang C, Li L. Investigation of the effects of the magnetic field on the anodic dissolution of copper in NaCl solutions with holography [J]. Corros. Sci., 2012, 58: 69
[30] Fujiwara M, Kodoi D, Duan W, et al. ChemInform Abstract: Separation of transition metal ions in an inhomogeneous magnetic field [J]. Chem. Inform, 2001, 32: 3344
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.