Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (9): 659-665    DOI: 10.11901/1005.3093.2019.068
  研究论文 本期目录 | 过刊浏览 |
混凝土养护期间HRB400钢筋钝化行为研究
商百慧1,3,马元泰1,孟美江1,李瑛1,2()
1. 中国科学院金属研究所腐蚀与防护研究部 沈阳 110016
2. 东北大学 沈阳材料科学国家研究中心 沈阳 110819
3. 中国科学技术大学材料科学与工程学院 沈阳 110016
Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete
SHANG Baihui1,3,MA Yuantai1,MENG Meijiang1,LI Ying1,2()
1. Corrosion and Protection Division, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China
3. School of Material Science and Technology, University of Science and Technology of China, Shenyang 110016, China
引用本文:

商百慧,马元泰,孟美江,李瑛. 混凝土养护期间HRB400钢筋钝化行为研究[J]. 材料研究学报, 2019, 33(9): 659-665.
Baihui SHANG, Yuantai MA, Meijiang MENG, Ying LI. Characterisation of Passive Film on HRB400 Steel Rebar in Curing Stage of Concrete[J]. Chinese Journal of Materials Research, 2019, 33(9): 659-665.

全文: PDF(1680 KB)   HTML
摘要: 

为了研究HRB400钢筋在模拟养护阶段混凝土孔隙液中表面钝化膜的生长过程,采用3种电化学测试技术(开路电位、电化学阻抗谱、动电位极化曲线)研究钢筋表面钝化膜的性能随着浸泡时间的变化特征,此外通过XPS对稳定钝化膜的成分与结构进行分析。结果表明,同传统钢筋材料一样,HRB400钢筋在模拟混凝土养护条件的溶液中展现出良好的耐蚀性能,浸泡5 d后便能够生成稳定钝化膜。XPS分析发现钢筋钝化膜为双层结构,内层以二价铁离子化合物为主,外层主要由三价铁离子化合物组成。

关键词 材料失效与保护HRB400钢筋钝化膜电化学测试浸泡时间    
Abstract

The standard curing time of concrete is 28 days in order to guarantee the strength of the concrete. It is well known that a stable passive film can be formed on the surface of steel rebar in the alkaline pore fluid during the concrete curing stage, long before the steel rebar will be influenced by chloride ingress or concrete carbonation in the future. However, there is no consensus on the time conditions for the pre-passivation of the steel bars in the open literature. In this study, the growth process and characteristic evolution of the passive film formed on HRB400 steel rebar in a Ca(OH)2 saturated solution, which aims to simulate the medium in concrete pores during curing period, were studied by a series of electrochemical tests (open-circle potential (OCP), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization curve (PDC)) and XPS. Results show that it will take 5 days to form a stable passive film on the surface of HRB400 steel rebar, and the passive film has a two-layered structure. In the initial stage of passivation, on the HRB400 steel surface a thin film mainly composed of Fe(II) products firstly formed, then on top of which, a film mainly composed of Fe(III) products would further form.

Key wordsmaterials failure and protection    HRB400 steel rebar    passive film    electrochemical tests    immersion time
收稿日期: 2019-01-18     
ZTFLH:  TG174.1  
基金资助:国家重点基础研究发展计划(2015CB655105);国家自然科学基金(51671198)
作者简介: 商百慧,男,1991年生,博士生
ElementsCSiMnPSVFe
Content0.17~0.250.4~0.801.2~1.6≤0.045≤0.0450.03~0.06Bal.
表1  HRB400 钢筋主要化学成分 (%, 质量分数)
图1  HRB400钢筋在饱和氢氧化钙溶液中浸泡不同时间后开路电位的测试结果
图2  HRB400钢筋在饱和氢氧化钙溶液中浸泡不同时间后的电化学阻抗的测试结果
图3  用于钝化钢筋试样电化学阻抗数据拟合的等效电路
图4  由阻抗数据拟合得到的极化电阻随浸泡时间变化关系
图5  HRB400钢筋在饱和氢氧化钙溶液(pH=12.5)中浸泡不同时间后动电位极化曲线的测试结果
图6  HRB400钢筋钝化膜表面Fe 2p3/2 沿深度变化XPS精细谱图及拟合结果
图7  不同溅射时间条件下HRB400钢筋表面钝化膜中4种铁产物的相对含量
图8  模拟混凝土养护条件下HRB400钢筋钝化膜的组成示意图
1 GeY, ZhuX Y, LiY. Corrosion Control of Reinforced in Concrete Structures-Application of Zinc and Zinc Alloys [M]. Beijing: Science Press, 2015
1 葛 燕, 朱锡昶, 李 岩. 混凝土结构钢筋腐蚀控制-锌与锌合金的应用 [M]. 北京: 科学出版社, 2015
2 HouB R. The Cost of Corrosion in China [M]. Beijing: Science Press, 2017
2 侯宝荣. 中国腐蚀成本 [M]. 北京: 科学出版社, 2017
3 KeW. Investigation Report on Corrosion in China [M]. Beijing: Chemical Industry Press, 2003
3 柯 伟. 中国腐蚀调查报告 [M]. 北京: 化学工业出版社, 2003
4 PoursaeeA, HanssonC M. Reinforcing steel passivation in mortar and pore solution [J]. Cem. Concr. Res., 2007, 37: 1127
5 WangY S, ZuoY, ZhaoX H, et al. The adsorption and inhibition effect of calcium lignosulfonate on Q235 carbon steel in simulated concrete pore solution [J]. Appl. Surf. Sci., 2016, 379: 98
6 LiuG J, ZhangY S, NiZ W, et al. Corrosion behavior of steel submitted to chloride and sulphate ions in simulated concrete pore solution [J]. Constr. Build. Mater., 2016, 115: 1
7 CaoF T, WeiJ, DongJ H, et al. The corrosion inhibition effect of phytic acid on 20SiMn steel in simulated carbonated concrete pore solution [J]. Corros. Sci., 2015, 100: 365
8 CaoF T, WeiJ, DongJ H, et al. Corrosion behavior of 20SiMn steel rebar in carbonate/bicarbonate solutions with the same pH value [J]. Acta Metall. Sin., 2016, 50: 674
8 曹凤婷, 魏 洁, 董俊华等. 20SiMn钢在恒定pH值的碳酸盐溶液中的腐蚀行为 [J]. 金属学报, 2016, 50: 674
9 LiuM, ChengX Q, LiX G, et al. Corrosion behavior of Cr modified HRB400 steel rebar in simulated concrete pore solution [J]. Constr. Build. Mater., 2015, 93: 884
10 ShiJ J, SunW, GengG Q. Influence of simulated concrete pore solution on reinforcing steel passivation [J]. J. Build. Mater., 2011, 14: 452
10 施锦杰, 孙 伟, 耿国庆. 模拟混凝土孔溶液对钢筋钝化的影响 [J]. 建筑材料学报, 2011, 14: 452
11 VolpiE, OliettiA, StefanoniM, et al. Electrochemical characterization of mild steel in alkaline solutions simulating concrete environment [J]. J. Electroanal. Chem., 2015, 736: 38
12 SánchezM, GregoriJ, AlonsoC, et al. Electrochemical impedance spectroscopy for studying passive layers on steel rebars immersed in alkaline solutions simulating concrete pores [J]. Electrochim. Acta, 2007, 52: 7634
13 GhodsP, IsgorO B, McRaeG, et al. The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement [J]. Cem. Concr. Comp., 2009, 31: 2
14 SongD, MaA B, SunW, et al. Improved corrosion resistance in simulated concrete pore solution of surface nanocrystallized rebar fabricated by wire-brushing [J]. Corros. Sci., 2014, 82: 437
15 LiuR, JiangL H, XuJ X, et al. Influence of carbonation on chloride-induced reinforcement corrosion in simulated concrete pore solutions [J]. Constr. Build. Mater., 2014, 56: 16
16 WilliamsonJ, IsgorO B. The effect of simulated concrete pore solution composition and chlorides on the electronic properties of passive films on carbon steel rebar [J]. Corros. Sci., 2016, 106: 82
17 GhodsP, IsgorO B, BensebaaF, et al. Angle-resolved XPS study of carbon steel passivity and chloride-induced depassivation in simulated concrete pore solution [J]. Corros. Sci., 2012, 58: 159
18 Guangzhou Sihang Engineering Machinery Research Institute. JTJ 275-2000 Corrosion prevention technical specifications for concrete structures of marine harbour engineering [S]
18 广州四航工程机术研究院. JTJ 275-2000海港工程混凝土结构防腐蚀技术规范 [S])
19 LiuX M, ShiZ M, LinH C, et al. A study on corrosion behavior of reinforced rebar in simulated pore solution by Electrochemical Impedance Spectroscopy (EIS) [J]. J. Chin. Soc. Corros. Prot., 1997, 17(1): 19
19 刘晓敏, 史志明, 林海潮等. 钢筋在混凝土模拟液中腐蚀行为的EIS特征 [J]. 中国腐蚀与防护学报, 1997, 17(1): 19)
20 ShiJ J, SunW, GengG Q. Influence of carbonation on the corrosion performance of steel HRB 335 in simulated concrete pore solution [J]. Acta Metall. Sin., 2011, 47: 17
20 施锦杰, 孙 伟, 耿国庆. 碳化对模拟混凝土孔溶液中HRB335钢筋腐蚀行为的影响 [J]. 金属学报, 2011, 47: 17
21 ZhengH B, LiW H, MaF B, et al. The performance of a surface-applied corrosion inhibitor for the carbon steel in saturated Ca(OH)2 solutions [J]. Cem. Concr. Res., 2014, 55: 102
22 LvS B, ZhangW. Problems existing in promoting high strength steel bar use in China and countermeasures [J]. Res. Appl. Build. Mater., 2013, (6): 46
22 吕书斌, 张 薇. 我国推广应用高强钢筋存在的问题及对策建议 [J]. 建材技术与应用, 2013, (6): 46)
23 MorrisonS R, Translated by WuH H. Electrochemistry at Semiconductor and Oxidized Metal Electrodes [M]. Beijing: Science Press, 1988
23 莫里森 S R著, 吴辉煌译. 半导体与金属氧化膜的电化学 [M]. 北京: 科学出版社, 1988
24 CaoC N. Principles of Electrochemistry of Corrosion. 2nd ed. [M]. Beijing: Chemical Industry Press, 2004
24 曹楚南. 腐蚀电化学原理 .第2版 [M]. 北京: 化学工业出版社, 2004
25 HuetB, L'HostisV, MiserqueF, et al. Electrochemical behavior of mild steel in concrete: Influence of pH and carbonate content of concrete pore solution [J]. Electrochim. Acta, 2005, 51: 172
26 GhodsP, IsgorO B, BrownJ R, et al. XPS depth profiling study on the passive oxide film of carbon steel in saturated calcium hydroxide solution and the effect of chloride on the film properties [J]. Appl. Surf. Sci., 2011, 257: 4669
27 GunayH B, GhodsP, IsgorO B, et al. Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS [J]. Appl. Surf. Sci., 2013, 274: 195
28 XuW, DaubK, ZhangX, et al. Oxide formation and conversion on carbon steel in mildly basic solutions [J]. Electrochim. Acta, 2009, 54: 5727
29 Sánchez-MorenoM, TakenoutiH, García-Jare?oJ J, et al. A theoretical approach of impedance spectroscopy during the passivation of steel in alkaline media [J]. Electrochim. Acta, 2009, 54: 7222
[1] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[4] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[7] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[8] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[9] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[10] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[11] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[12] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[13] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[14] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.
[15] 段体岗, 黄国胜, 马力, 彭文山, 张伟, 许立坤, 林志峰, 何华, 毕铁满. Q235/Ni-Co基自修复涂层的制备和耐蚀性能[J]. 材料研究学报, 2020, 34(10): 777-783.