Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (8): 635-640    DOI: 10.11901/1005.3093.2019.072
  研究论文 本期目录 | 过刊浏览 |
基于Diels-Alder反应的自修复环氧树脂的制备和修复行为
何霞,王飞,赵翰文,王彦平,冯利邦()
兰州交通大学材料科学与工程学院 兰州 730070
Preparation and Healing Behavior of Self-healing Epoxy Resins Based on Diels-Alder Reaction
Xia HE,Fei WANG,Hanwen ZHAO,Yanping WANG,Libang FENG()
School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
引用本文:

何霞, 王飞, 赵翰文, 王彦平, 冯利邦. 基于Diels-Alder反应的自修复环氧树脂的制备和修复行为[J]. 材料研究学报, 2019, 33(8): 635-640.
Xia HE, Fei WANG, Hanwen ZHAO, Yanping WANG, Libang FENG. Preparation and Healing Behavior of Self-healing Epoxy Resins Based on Diels-Alder Reaction[J]. Chinese Journal of Materials Research, 2019, 33(8): 635-640.

全文: PDF(5370 KB)   HTML
摘要: 

先使环氧氯丙烷与糠胺反应合成含有呋喃环的双环氧基糠基缩水甘油胺(DGFA),再与双马来酰亚胺发生Diels-Alder(DA)反应制备出热可逆自修复环氧树脂EP-DA。用FT-IR表征了EP-DA的化学结构和热可逆性。模拟了实际使用过程中环氧树脂受到冲击破环而内部产生裂纹、进行热处理使裂纹愈合实现了材料的自修复过程。根据宏观定性观察和弯曲载荷恢复的定量测量,证实了这种环氧树脂具有良好的自修复性能且可实现多次破坏的自修复。这种环氧树脂具有优异的再加工性能,可实现废旧环氧树脂的回收再利用。

关键词 有机高分子材料自修复Diels-Alder反应环氧树脂热可逆    
Abstract

The di-epoxy group-based N,N-diglycidyl-furfurlamine (DGFA) containing furan ring was synthesized via the reaction between epichlorohydrin and decylamine. Then a thermo-reversible epoxy resin (EP-DA) with self-healing performance is prepared by Diels-Alder (DA) reaction between the synthesized DGFA and bismaleimide. The structure and thermal reversibility of the prepared EP-DA were characterized by Fourier transform infrared spectroscopy (FT-IR). Results show that the as-prepared EP-DA exhibits excellent thermal reversibility, which is confirmed by the appearance observation and absence of the infrared absorption peak of DA bonds before and after heat treated at 130oC. The as-prepared EP-DA has outstanding self-healing performance, which was approved via the qualitative observation of crack evolution and quantitative measurement of flexural load restoring by simulating crack repair. The width of cracks in EP-DA decreases gradually with the extending heat treatment time, while crack disappears completely when which is treated at 130oC for 6 min, indicating that the self-healing rate is very high and cracks in EP-DA have been repaired apparently in 6 min. The EP-DA with cracks can be repaired completely upon heat treatment at 130oC for 30 min and followed by 48 h at 70oC; Moreover, the EP-DA has outstanding multiple damage/self-repair performance, and cracks within EP-DA can be repaired for more than three times. The repair efficiency of EP-DA after cut in half and then put together can reach 71.7%, 61.6%, and 54.5% after damage/heat treatment for three times in turn. Additionally, the as-prepared epoxy resin exhibits excellent reprocessing performance and which makes the recycling of waste epoxy resin possible.

Key wordsorganic polymer materials    self-healing    Diels-Alder reaction    epoxy resin    thermal reversibility
收稿日期: 2019-01-21     
ZTFLH:  TQ323  
基金资助:国家自然科学基金(No. 51463010);Supported by National Natural Science Foundation of China(No. 51463010)
作者简介: 何 霞,女,1993年生,硕士生
图1  EP-DA的制备过程
图2  DGFA、BMI、EP-DA的红外光谱
图3  EP-DA在70oC反应不同时间后的弯曲载荷-位移曲线
图4  带冲击裂纹的EP-DA试样在不同温度热处理时裂纹随时间的变化
图5  在130℃热处理不同时间EP-DA试样的弯曲强度
图6  EP-DA的化学结构的变化
图7  DA及r-DA反应分子结构变化示意图
图8  EP-DA自修复过程机理示意图
图9  EP-DA多次自修复的代表性弯曲载荷-位移曲线
SampleFlexural load/N

Strength

/MPa

Flexural displacement

/mm

Healing efficiency /%
EP-DA072.756.50.47-
EP-DA152.140.50.4671.7
EP-DA244.834.80.4261.6
EP-DA339.630.80.3954.5
表1  EP-DA试样在三点弯曲试验中的力学性能和修复效率
图10  EP-DA再加工过程示意图
[1] Grishchuk S. Structure, thermal and fracture mechanical properties of benzoxazine-modified amine-cured DGEBA epoxy resins [J]. Express Polym. Lett., 2011, 5(3): 273
[2] William T A, Andrew L, Jeremy C, et al. Development of a PEO-based lithium ion conductive epoxy resin polymer electrolyte [J]. Solid State Ionics, 2018, 326: 150
[3] Alfred T N, Mahesh H, Eldon T, et al. Viscoelastic and thermal properties of full and partially cured DGEBA epoxy resin composites modified with montmorillonite nanoclay exposed to UV radiation [J]. Polym. Ddgrad Stabil., 2014, 101: 81
[4] Ji Y R, Xiong X H, Chen P, et al. Synthesis and properties of phthalocyanine and cyano-containing epoxy resin [J]. Chin. J. Mater. Res., 2017, 31(12): 925
[4] 冀阳冉, 熊需海, 陈平等. 含酞cardo环和氰基环氧树脂的制备和性能 [J]. 材料研究学报, 2017, 31(12): 925)
[5] Raimondo M, Guadagno L, Naddeo C, et al. New structure of diamine curing agent for epoxy resins with self-restoration ability: Synthesis and spectroscopy characterization [J]. J. Mol. Struct., 2017, 1130: 400
[6] Wu D Y, Meure S, Solomon D, et al. Self-healing polymeric materials: A review of recent developments [J]. Prog. Polym. Sci., 2008, 33(5): 479
[7] Chen X. A thermally re-mendable cross-linked polymeric material [J]. Science, 2002, 295(5560): 1698
[8] Chen X, Wudl F, Mal A K, et al. New thermally remendable highly cross-linked polymeric materials [J]. Macromolecules, 2003, 36(6): 1802
[9] Araya-Hermosilla R, Broekhuis A A, Picchioni F, et al. Reversible polymer networks containing covalent and hydrogen bonding interactions [J]. Eur. Polym. J, 2014, 50: 127
[10] Toncelli C, De Reus D C, Picchioni F, et al. Properties of reversible Diels-Alder furan/maleimide polymer networks as function of crosslink density [J]. Macromol. Chem. Phys, 2012, 213(2): 157
[11] Liu Y, Chen Y. Thermally reversible cross-linked polyamides with high toughness and self repairing-ability from maleimide-and furan-functionalized aromatic polyamides [J]. Macromol. Chem. Phys., 2010, 208(2): 224
[12] Liu Y L, Hsieh C Y, Chen Y W, et al. Thermally reversible cross-linked polyamides and thermo-responsive gels by means of Diels-Alder reaction [J]. Polymer, 2006, 47(8): 2581
[13] Rudolph T, Barthel M J, Kretschmer F, et al. Poly(2-vinyl pyridine)-block-poly(ethylene oxide) featuring a furan group at the block junction-synthesis and functionalization [J]. Macromol. Rapid. Comm., 2014, 35(9): 916
[14] Yoshie N, Watanabe M, Araki H, et al. Thermo-responsive mending of polymers crosslinked by thermally reversible covalent bond: Polymers from bisfuranic terminated poly(ethylene adipate) and tris-maleimide [J]. Polym. Degrad. Stab., 2010, 95(5): 826
[15] Mahmoud E, Yu J, Gorte R J, et al. Diels-Alder and Dehydration Reactions of Biomass-DerivedFuran and Acrylic Acid for the Synthesis of Benzoic Acid [J]. ACS Catal., 2015, 5(11): 6946
[16] Du P, Wu M, Liu X, et al. Diels-Alder-based crosslinked self-healing polyurethane/urea from polymeric methylene diphenyl diisocyanate [J]. J. Appl. Polym. Sci., 2014, 131(9): 1017
[17] Yu S, Zhang R, Wu Q, et al. Bio-inspired high-performance and recyclable cross-linked polymers [J]. Adv. Mater., 2013, 25(35): 4912
[18] Rivero G, Nguyen L T T, Hillewaere X K D, et al. One-pot thermo-remendable shape memory polyurethanes [J]. Macromolecules, 2014, 47(6): 2010
[19] Feng L B, Yu Z Y, Bian Y H, et al. Self-healing behavior of polyurethanes based on dual actions of thermo-reversible Diels-Alder reaction and thermal movement of molecular chains [J]. Polymer, 2017, 124: 48
[20] Vilela C, Silvestre A J D, Gandini A, et al. Thermoreversible nonlinear diels-alder polymerization of furan/plant oil monomers [J]. J. Polym. Sci., Part A: Polym. Chem., 2013, 51(10): 2260
[21] Ursache O, Gaina C, Gaina V, et al. Studies on Diels-Alder thermoresponsive networks based on ether-urethane bismaleimide functionalized poly (vinyl alcohol) [J]. J. Therm Anal. Calorim., 2014, 118(3):1471
[22] Berg G J, Gong T, Fenoli C R, et al. A dual-cure, solid-state photoresist combining a thermoreversible Diels-Alder network and a chain growth acrylate network [J]. Macromolecules, 2014, 47(10):3473
[23] Zhu D Y, Gu T, Yu J, et al. Dynamic rheological characterization of PLA/PBS blends compatibilized by epoxy furan resin [J]. Chin. J. Mater. Res., 2018, 32(7): 548
[23] 朱大勇, 辜 婷, 于 杰等. 环氧呋喃树脂反应性增容PLA/PBS共混体系的动态流变学表征 [J]. 材料研究学报, 2018, 32(7): 548)
[24] Zhao H W, Feng L B, Shi X T, et al. Synthesis and healing behavior of thermo-reversible self-healing epoxy resins [J]. Acta. Polym. Sin., 2018, (3): 2
[24] 赵翰文, 冯利邦, 史雪婷等. 热可逆自修复环氧树脂的合成与修复行为 [J]. 高分子学报, 2018, (3): 2)
[25] Postiglione G, Turri S, Levi M, et al. Effect of the plasticizer on the self-healing properties of a polymer coating based on the thermoreversible Diels-Alder reaction [J]. Prog. Org. Coat., 2015, 78:526
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 赵鹏, 董英杰, 李响, 陈斌, 张英. 界面强度对柔性环氧树脂/粘土纳米复合材料热/力学性能的影响[J]. 材料研究学报, 2022, 36(6): 454-460.
[5] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[6] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[7] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[8] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[9] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[10] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[11] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[12] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[13] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[14] 季亚明, 杨雅茹, 姚勇波, 李佳倩, 沈小军, 刘淑强. 碳纳米球基氮--硫复合阻燃剂的合成及其对环氧树脂的阻燃性能[J]. 材料研究学报, 2021, 35(12): 918-924.
[15] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.