Please wait a minute...
材料研究学报  2021, Vol. 35 Issue (12): 918-924    DOI: 10.11901/1005.3093.2021.393
  研究论文 本期目录 | 过刊浏览 |
碳纳米球基氮--硫复合阻燃剂的合成及其对环氧树脂的阻燃性能
季亚明1, 杨雅茹1,2(), 姚勇波1,2, 李佳倩1, 沈小军1,2, 刘淑强3
1.嘉兴学院材料与纺织工程学院 嘉兴 314001
2.浙江省纱线材料成型与复合加工技术研究重点实验室 嘉兴 314001
3.太原理工大学纺织工程学院 晋中 030600
Synthesis of Carbon Nanosphere-Based Nitrogen-Phosphorus-Sulfur Compound Flame Retardant and Flame Retardancy of CNSs-H-D Reinforced Epoxy Resin
JI Yaming1, YANG Yaru1,2(), YAO Yongbo1,2, LI Jiaqian1, SHEN Xiaojun1,2, LIU Shuqiang3
1.School of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
2.Zhejiang Key Laboratory of Yarn Material Forming and Composite Processing Technology, Jiaxing 314001, China
3.School of Textile Engineering, Taiyuan University of Technology, Jinzhong 030600, China
引用本文:

季亚明, 杨雅茹, 姚勇波, 李佳倩, 沈小军, 刘淑强. 碳纳米球基氮--硫复合阻燃剂的合成及其对环氧树脂的阻燃性能[J]. 材料研究学报, 2021, 35(12): 918-924.
Yaming JI, Yaru YANG, Yongbo YAO, Jiaqian LI, Xiaojun SHEN, Shuqiang LIU. Synthesis of Carbon Nanosphere-Based Nitrogen-Phosphorus-Sulfur Compound Flame Retardant and Flame Retardancy of CNSs-H-D Reinforced Epoxy Resin[J]. Chinese Journal of Materials Research, 2021, 35(12): 918-924.

全文: PDF(1934 KB)   HTML
摘要: 

以碳纳米球(CNSs)为核、六氯环三磷腈(HCCP)和氨基二苯砜(DDS)为桥梁和接枝剂制备一种碳纳米球基氮-磷-硫复合阻燃剂(CNSs-H-D)并表征其形貌结构和热稳定性,研究了这种复合阻燃剂对环氧树脂(EP)的阻燃性能和机理。结果表明:合成的CNSs-H-D是直径为80 nm的球状颗粒,热稳定性优异;CNSs-H-D添加量(质量分数)为5%的CNSs-H-D/EP,其LOI从EP的20.0%提高到27.5%,阻燃等级为V-2级,热释放速率峰值和火灾危险性指数比EP分别降低16.8%和42.2%;CNSs-H-D可显著提高EP的热稳定性和成炭性,CNSs-H-D/EP的初始分解温度比EP高40℃,高温残炭量提高了144.7%。CNSs-H-D/EP具有典型的凝聚相阻燃机理,其炭层的致密性和连续性好,初始失重温度比纯EP的炭层高190℃,800℃的剩余质量高达94.5%。

关键词 复合材料氮-磷-硫复合阻燃剂碳纳米球环氧树脂阻燃    
Abstract

Carbon nanosphere based nitrogen-phosphorus-sulfur composite flame retardant (CNSs-H-D) was synthesized with the desired carbon nanospheres (CNSs) as core, hexachlorocyclotriphosphazene (HCCP) as bridge and amino diphenyl sulfone (DDS) as grafting agent. The morphology and thermal stability of CNSs-H-D were characterized. Afterwards, the composite of CNSs-H-D reinforced epoxy resin (EP) (CNSs-H-D/EP) was made and its flame retardancy and the relevant mechanism were investigated. Results show that the synthesized CNSs-H-D displayed a spherical morphology with a mean diameter of 80 nm and excellent thermal stability. Specifically, the LOI of CNSs-H-D/EP increased from 20.0% (of pure EP) to 27.5% (with addition of 5%(mass fraction) CNSs-H-D/EP), thus its flame retardance reached grade V-2 and its peak value of heat-release rate and fire-risk index reduced by 16.8% and 42.2%, respectively. Moreover, CNSs-H-D could significantly improve the thermal stability and char formation of EP. The initial decomposition temperature and high-temperature char residue of CNSs-H-D/EP increased by 40℃ and 144.7% respectively, in comparison with the pure EP. Furthermore, the initial weight loss temperature of CNSs-H-D/EP was 190℃ higher than that of EP. With good compactness and continuity of char layer, the CNSs-H-D/EP exhibited a typical condensed phase flame-retardant mechanism, where the char residue was as high as 94.5% at 800℃.

Key wordscomposite    nitrogen-phosphorus-sulfur compound flame retardant    carbon nanospheres    epoxy resin    flame retardant
收稿日期: 2021-07-05     
ZTFLH:  TB332  
基金资助:浙江省自然科学基金(LQ21E030008);全国大学生创新创业培训计划(CD851920510);嘉兴学院大学生研究与培训项目(CD8517203298);浙江省纱线材料成形与复合加工技术重点实验室开放项目(MTC2020-09)
作者简介: 季亚明,男,1999年生,本科生
SamplesE-51/gCYDHD-593/gCNSs-H-D/g
EP-0100280
EP-110026.721.28
EP-210024.163.84
EP-310021.66.4
表1  阻燃环氧复合材料的配方
图1  CNSs和CNSs-H-D的SEM照片和EDS能谱
图2  DDS、HCCP以及CNSs、CNSs-H-D的红外光谱
图3  CNSs和CNSs-H-D的TG曲线
Samples

LOI

/%

UL-94 vertical burning test
t1/t2/st3/sIgnitecottonRate
EP-020.0>30>60YesNR
EP-123.06.8/5.16.0YesV-2
EP-225.85.5/3.34.0YesV-2
EP-327.53.9/1.92.2YesV-2
表2  LOI和UL-94的垂直燃烧测试结果
图4  热释放速率和总热释放曲线
SamplesEP-0EP-1EP-2EP-3
TTI / s27293839
pk-HRR / kW·m-21372.291203.011168.311146.12
THR / MJ·m-2262.45230.50227.45218.32
pk-HRR/TTI /kW·(m2·s)-150.8341.4830.7529.39
表3  锥形量热仪测试数据
图5  EP和CNSs-H-D/EP的TG和DTG曲线
图6  EP和CNSs-H-D/EP残炭的SEM 照片
图7  残炭的TG曲线
图8  残炭的红外光谱
1 Shi C Y, Wang J F, Chen H X, et al. Preparation and properties of epoxy resin composites incorporated with optical fiber preform waste [J]. Chin. J. Mater. Res., 2020, 34: 57
1 石从云, 王金峰, 陈红祥等. 光棒废料改性环氧树脂复合材料的制备和性能 [J]. 材料研究学报, 2020, 34: 57
2 Lu L G, Chen Y H, Wang S H, et al. Preparation and flame retardancy of intumescent flame-retardant epoxy resin [J]. Chin. J. Mater. Res., 2014, 28: 455
2 卢林刚, 陈英辉, 王舒衡等. 新型磷氮膨胀性阻燃剂/OMMT协同阻燃环氧树脂的制备及阻燃性能 [J]. 材料研究学报, 2014, 28: 455
3 Guo J, Song H X, Liu H, et al. Polypyrrole-interface-functionalized nano-magnetite epoxy nanocomposites as electromagnetic wave absorbers with enhanced flame retardancy [J]. J. Mater. Chem. C, 2017, 5: 5334
4 Wang S, Ma S Q, Xu C X, et al. Vanillin-derived high-performance flame retardant epoxy resins: facile synthesis and properties [J]. Macromolecules, 2017, 50: 1892
5 Qian L J, Ye L J, Xu G Z, et al. The non-halogen flame retardant epoxy resin based on a novel compound with phosphaphenanthrene and cyclotriphosphazene double functional groups [J]. Polym. Degrad. Stab., 2011, 96: 1118
6 Hu X, Yang H Y, Jiang Y P, et al. Facile synthesis of a novel transparent hyperbranched phosphorous/nitrogen-containing flame retardant and its application in reducing the fire hazard of epoxy resin [J]. J. Hazard. Mater., 2019, 379: 120793
7 Wang D H, Liu Q Y, Peng X L, et al. High-efficiency phosphorus/nitrogen-containing flame retardant on epoxy resin [J]. Polym. Degrad. Stab., 2021, 187: 109544
8 Battig A, Markwart J, Wurm F R, et al. Sulfur's role in the flame retardancy of thio-ether–linked hyperbranched polyphosphoesters in epoxy resins [J]. Eur. Polym. J., 2020, 122: 109390
9 Wang X, Kalali E N, Wan J T, et al. Carbon-family materials for flame retardant polymeric materials [J]. Prog. Polym. Sci., 2017, 69: 22
10 Liu S, Fang Z P, Yan H Q, et al. Synergistic flame retardancy effect of graphene nanosheets and traditional retardants on epoxy resin [J]. Compos. A, 2016, 89: 26
11 Kong Q H, Wu T, Tang Y Q, et al. Improving thermal and flame retardant properties of epoxy resin with organic NiFe-layered double hydroxide-carbon nanotubes hybrids [J]. Chin. J. Chem., 2017, 35: 1875
12 Guo W W, Yu B, Yuan Y, et al. In situ preparation of reduced graphene oxide/DOPO-based phosphonamidate hybrids towards high-performance epoxy nanocomposites [J]. Compos. B, 2017, 123: 154
13 Liang Q, Zhang E H, Yan G, et al. A lithium ion-imprinted adsorbent using magnetic carbon nanospheres as a support for the selective recovery of lithium ions [J]. New Carbon Mater., 2020, 35: 696
14 Liu M X, Shi M C, Lu W J, et al. Core–shell reduced graphene oxide/MnOx@carbon hollow nanospheres for high performance supercapacitor electrodes [J]. Chem. Eng. J., 2017, 313: 518
15 Jin Z, Zou H L, Quan Q, et al. Effect of chemical oxidation on the structure of single-walled carbon nanotubes [J]. J. Phys. Chem., 2003, 107B: 3712
16 Mensah R A, Xu Q, Asante-Okyere S, et al. Correlation analysis of cone calorimetry and microscale combustion calorimetry experiments [J]. J. Therm. Anal. Calorim., 2019, 136: 589
17 Nazaré S, Kandola B, Horrocks A R. Use of cone calorimetry to quantify the burning hazard of apparel fabrics [J]. Fire Mater., 2002, 26: 191
18 Jia P Y, Zhang M, Liu C G, et al. Effect of chlorinated phosphate ester based on castor oil on thermal degradation of poly (vinyl chloride) blends and its flame retardant mechanism as secondary plasticizer [J]. RSC Adv., 2015, 5: 41169
19 Ran S Y, Chen C, Guo Z H, et al. Char barrier effect of graphene nanoplatelets on the flame retardancy and thermal stability of high-density polyethylene flame-retarded by brominated polystyrene [J]. J. Appl. Polym. Sci., 2014, 131: 40520
20 Qiu Y, Qian L J, Xi W. Flame-retardant effect of a novel phosphaphenanthrene/triazine-trione bi-group compound on an epoxy thermoset and its pyrolysis behaviour [J]. RSC Adv., 2016, 6: 56018
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.