Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (5): 394-400    DOI: 10.11901/1005.3093.2018.552
  研究论文 本期目录 | 过刊浏览 |
YVO4: Eu3+, Bi3+红色荧光粉的水热合成及其荧光性能
韦庆敏1,李秀英1,许石桦2,刘国聪3,黄国保1(),罗志辉1()
1. 广西农产资源化学与生物技术重点实验室 玉林师范学院化学与食品科学学院 玉林 537000
2. 梧州学院化学工程与资源再利用学院 梧州 543000
3. 惠州学院化工技术开发中心 惠州 516007
Hydrothermal Synthesis and Photoluminescent Properties of YVO4: Eu3+, Bi3+ Red Phosphors
Qingmin WEI1,Xiuying LI1,Shihua XU2,Guocong LIU3,Guobao HUANG1(),Zhihui LUO1()
1. Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science of Yulin Normal University, Yulin 537000, China
2. College of Chemical Engineering and Resource Recycling, Wuzhou University, Wuzhou, 543000, China
3. Department of Chemical Engineering, Huizhou University, Huizhou 516007, China
引用本文:

韦庆敏,李秀英,许石桦,刘国聪,黄国保,罗志辉. YVO4: Eu3+, Bi3+红色荧光粉的水热合成及其荧光性能[J]. 材料研究学报, 2019, 33(5): 394-400.
Qingmin WEI, Xiuying LI, Shihua XU, Guocong LIU, Guobao HUANG, Zhihui LUO. Hydrothermal Synthesis and Photoluminescent Properties of YVO4: Eu3+, Bi3+ Red Phosphors[J]. Chinese Journal of Materials Research, 2019, 33(5): 394-400.

全文: PDF(4424 KB)   HTML
摘要: 

以Y2O3、Eu2O3、Bi(NO3)3·H2O、浓HNO3、偏钒酸铵、氨水、无水乙醇和一缩二乙二醇为原料,采用聚乙烯吡咯烷酮(PVP)辅助水热法合成YVO4: Eu3+, Bi3+纳米颗粒。使用X射线衍射(XRD)、扫描电镜(SEM)、红外光谱(IR)和荧光光谱(FL)等手段对产品进行了表征和分析。结果表明:合成的样品为YVO4: Eu3+, Bi3+纳米颗粒,均具有四方晶相结构,其微结构随反应溶液的的pH值变化。YVO4: Eu3+, Bi3+纳米颗粒在619 nm处有较强的红光发射(电偶极跃迁5D07F2),在594 nm有较弱的橙光发射(磁偶极跃迁5D07F1)。随着Eu/Bi比值的增大材料的荧光先增强后减弱,在Eu/Bi比值为5时样品的红光发射最强。溶液的pH值影响YVO4: Eu3+, Bi3+纳米晶的发光强度,其中pH值为10时的样品其红光发射最强。并探讨了YVO4: Eu3+, Bi3+纳米晶的发光机理。

关键词 无机非金属材料YVO4: Eu3+Bi3+纳米颗粒荧光性能    
Abstract

Red phosphor nanoparticles YVO4:Eu3+,Bi3+ have been successfully prepared via a facile hydrothermal method with Y2O3, Eu2O3, HNO3, Bi(NO3)3·H2O, NH4VO3, NH3·H2O, HNO3, EtOH and diethylene glycol (DEG) as raw materials and polyvinyl pyrrolidone (PVP) as accessory ingredient. The as-prepared products were characterized by XRD, SEM, IR and PL. The results show that, all the samples are well crystallized and assigned to be the tetragonal crystal structure as the YVO4 phase. Their microstructure varied with the pH value of solutions. The YVO4:Eu3+, Bi3+ nanoparticles exhibit simultaneously orange (at 594 nm) and red (at 619 nm) emissions. The broad orange-red emissions can be attributed to the 5D07F1 and 5D07F2 transition of Eu3+ ion in YVO4 matrix. As the ratio of Eu3+/Bi3+ increases, the fluorescence intensities increase first and then weaken, while reach the strongest red emission at nEu3+/nBi3+=5. Besides, the pH value presents influence on the intensities of the YVO4:Eu3+, Bi3+ nanoparticles to some extent. The YVO4:Eu3+, Bi3+ nanoparticles prepared in the solution with pH = 10 exhibits the strongest red emission. Finally, the mechanism related with the Bi3+→Eu3+ energy transfer in YVO4:Eu3+, Bi3+ nanoparticles was also discussed.

Key wordsinorganic non-metallic materials    hydrothermal method    YVO4: Eu3+    Bi3+ nanoparticles    fluorescence
收稿日期: 2018-09-12     
ZTFLH:  TQ174  
基金资助:广西自然科学基金青年项目(2017GXNFBA198211);广西自然科学基金青年滚动项目(2014GXNSFBB118002);广西高校科学技术研究项目(KY2015LX301);玉林师范学院青年基金(2012YJQN31);玉林师范学院高层次人才科研启动项目(G20160002);玉林师范学院校级科研项目(2018YJKY36)
作者简介: 韦庆敏,男,1978年生,硕士生
图1  YVO4:Eu3+,Bi3+样品的XRD图谱
图2  不同pH值下合成所得样品的SEM照片
图3  YVO4:Eu3+,Bi3+样品的红外光谱
图4  YVO4:Eu3+,Bi3+的温室激发和发射光谱
图5  YVO4: Eu3+, Bi3+样品的能级结构和能量跃迁机理
图6  不同Eu/Bi值样品的荧光光谱
图7  不同Eu3+/Bi3+值样品的荧光光谱
图8  不同pH值样品的荧光光谱
[1] KanoT, OtomoY. Effects of impurities on the luminescence processes in YVO4: Eu [J]. Electrochem. Soc., 1969, 116: 64
[2] WangJ, XuY H. Hojamberdiev M,et al. A facile route to synthesize luminescent YVO4: Eu3+ porous nanoplates [J]. J. Non-Cryst. Solids, 2009, 355: 903
[3] LiuX L, ZhouF, GuM, et al. Fabrication of highly a-axis-oriented Gd2O3: Eu3+ thick film and its luminescence properties [J]. Opt. Mater., 2008, 31: 126
[4] HongB C, KawanoK. Syntheses of CaF2: Eu nanoparticles and the modified reducing TCRA treatment to divalent Eu ion [J]. Opt. Mater., 2008, 30: 952
[5] ChiJ Y, ChenJ S, LiuC Y, et al. Phosphor converted LEDs with omnidirectional-reflector coating [J]. Opt. Express, 2009, 17: 23530
[6] TanakaS, FujiharaS. Luminescent antireflective coatings with disordered surface nanostructures fabricated by liquid processes [J]. Langmuir, 2011, 27: 2929
[7] LevineA K, PalillaF C. A new, highly efficient red-emitting cathodoluminescent phosphor (YVO4: Eu) for color television [J]. Appl. Phys. Lett., 1964, 5: 118
[8] NeerajS, KijimaN, CheethamA K. Novel red phosphors for solid state lighting; the system BixLn1-xVO4: Eu3+/Sm3+(Ln=Y, Gd) [J]. Solid State Commun., 2004, 131: 65
[9] TakeshitaS, IsobeT, NiikuraS. Low-temperature wet chemical synthesis and photoluminescence properties of YVO4: Bi3+, Eu3+ nano-phosphors [J]. J. Luminescence, 2008, 128: 1515
[10] HuJ Q, BandoY, GolbergD. Self-catalyst growth and optical properties of novel SnO2 fishbone-like nanoribbons [J]. Chem. Phys. Lett., 2003, 372: 758
[11] IsoY, TakeshitaS, IsobeT. Effects of annealing on the photoluminescence properties of Citrate-Capped YVO4: Bi3+, Eu3+ Nanophosphor [J]. J. Phys. Chem., 2014, 118C: 11006
[12] ChenY C, WuY C, WangD Y, et al. Controlled synthesis and luminescent properties of monodispersed PEI-modified YVO4: Bi3+, Eu3+ nanocrystals by a facile hydrothermal process [J]. J. Mater. Chem., 2012, 22: 7961
[13] ChenL, ChenK J, LinC C, et al. Combinatorial approach to the development of a single mass YVO4: Bi3+, Eu3+ phosphor with red and green dual colors for high color rendering white light-emitting diodes [J]. J. Comb. Chem., 2010, 12: 587
[14] XuW, SongH W, YanD T, et al. YVO4: Eu3+, Bi3+ UV to visible conversion nano-films used for organic photovoltaic solar cells [J]. J. Mater. Chem., 2011, 21: 12331
[15] RambabuD P, AmalnerkarB, BuddhuduB B K S. Fluorescence spectra of Eu3+-doped LnVO4 (Ln=La and Y) powder phosphors [J]. Mater. Res. Bull., 2000, 35: 929
[16] LiuG C, DongH, WeiQ M, et al. Preparation and luminescence of mesoporous LaVO4: Eu3+ [J]. Chinese Journal of Materials Research, 2014, 28(1): 1
[16] 刘国聪, 董 辉, 韦庆敏等. 介孔LaVO4: Eu3+的制备和荧光性能 [J]. 材料研究学报, 2014, 28: 1
[17] JvuD B R. Optical Absorption intensities of rare-earth ions [J]. Phys. Rev., 1962. 127: 750
[18] PanigrahiB S, PeterS, ViswanathanK S, et al. Fluorescence enhancement of Tb3+ in Tb-aromatic acid complexes: correlation of synergistic enhancement with the structure of the ligand [J]. Spectrochim. Acta, 1995, 51A: 2289
[19] Nu?ezN, SabekJ, García-SevillanoJ, et al. Solvent-controlled synthesis and luminescence properties of uniform Eu: YVO4 Nanophosphors with different morphologies [J]. Eur. J. Inorg. Chem., 2013, 8: 1301
[20] HuangC K, ChenY C, HungW B, et al. Enhanced light harvesting of Si solar cells via luminescent down-shifting using YVO4: Bi3+, Eu3+ nanophosphors [J]. Prog. Photovolt., 2013, 21: 1507
[21] XuX R, SuM Z. Luminescence and Luminescence Materials [M]. Chemical Industry Press, 2004: 178
[21] 徐叙瑢, 苏勉曾(发光学与发光材料 [M]. 化学工业出版社, 2004: 178)
[22] DattaR K. Bismuth in yttrium vanadate and yttrium europium vanadate phosphors [J]. J. Electrochem. Soc., 1967, 114: 1057
[23] LiuG C, DuanX C, LiH B, et al. Novel polyhedron-like t-LaVO4: Dy3+ nanocrystals: Hydrothermal synthesis and photoluminescence properties [J]. J. Cryst. Growth, 2008, 310: 4689
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.