Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (4): 313-320    DOI: 10.11901/1005.3093.2018.403
  本期目录 | 过刊浏览 |
含铌中铬耐磨铸钢的摩擦磨损行为
张拓,滕铝丹,臧其玉,杨弋涛()
上海大学材料科学与工程学院 上海 200444
Friction and Wear Behavior of Niobium Alloyed Medium Chromium Wear-resistant Cast Steel
Tuo ZHANG,Lvdan TENG,Qiyu ZANG,Yitao YANG()
School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
引用本文:

张拓,滕铝丹,臧其玉,杨弋涛. 含铌中铬耐磨铸钢的摩擦磨损行为[J]. 材料研究学报, 2019, 33(4): 313-320.
Tuo ZHANG, Lvdan TENG, Qiyu ZANG, Yitao YANG. Friction and Wear Behavior of Niobium Alloyed Medium Chromium Wear-resistant Cast Steel[J]. Chinese Journal of Materials Research, 2019, 33(4): 313-320.

全文: PDF(19874 KB)   HTML
摘要: 

使用立式MM-W1型销盘摩擦磨损试验机进行含铌中铬耐磨铸钢的室温干滑动摩擦磨损实验,用扫描电子显微镜(SEM)和能谱仪(EDS)观察磨损表面形貌和亚表层的组织变化,研究了Nb含量对这种钢的磨损行为和磨损机制的影响。结果表明,加入0.2%(质量分数,下同)的Nb形成的不连续棒状铌碳化物和晶粒细化提高了试验钢的耐磨性能。但是,Nb含量过高则使钢发生严重的组织变形和生成粗大网状碳化物,使磨损表面脱落而降低耐磨性能。随着试验载荷的增大,含0.2%Nb试验钢的磨损机理从轻微磨粒磨损向黏着磨损和氧化磨损转变。

关键词 金属材料铌含量中铬耐磨铸钢碳化物磨损机理    
Abstract

Tribological behavior of experimental medium chromium wear-resistant cast steels with different niobium addition was investigated by using the MM-W1 pin-on-disc friction and wear tester at room temperature. The microstructure of the worn surface and subsurface were characterized by means of scanning electron microscopy and energy dispersive spectrometer, aiming to reveal the effect of Nb content on the wear behavior and mechanism for the steels. The results show that the addition of 0.2% (mass fraction) Nb can effectively increase the wear resistance of the steel due to the formation of discontinuous rod-like Nb carbides and the effect of grain refinement. An excess addition of Nb can reduce the wear resistance due to the occurrence of coarse mesh carbides and microstructural distortions, which then causes spallation of the worn surface. The 0.2%Nb test steel presented an evolvement of wear mechanism from slight abrasive wear to adhesive wear and oxidation wear.

Key wordsmetallic materials    niobium content    medium chromium wear-resistant cast steel    carbide    wear mechanism
收稿日期: 2018-06-22     
ZTFLH:  TH117.1  
作者简介: 张 拓,男,1993年生,硕士
No.CSiMnCrMoNbFe
10.470.981.494.840.800Bal.
20.461.141.514.790.840.19Bal.
30.461.131.484.830.790.47Bal.
表1  试验耐磨铸钢的化学成分(质量分数,%)
图1  销盘结构的示意图
图2  在不同磨损参数条件下磨损失重随Nb含量的变化
图3  在200 N和0.5 m/s条件下不同Nb含量试验钢的磨损表面和能谱
OSiCrMnMoNbFe
A30.980.472.220.590.47-65.27
B13.000.762.860.591.340.1481.31
C13.940.954.191.480.710.4878.25
表2  不同Nb含量试样磨损表面元素的EDS分析
图4  试验钢中碳化物的SEM形貌和晶粒尺寸
Nb content /mass fraction, %00.20.5
Hardness/HRC57.357.557.6
Carbide content/%2.22.52.9
Main type of carbide(Cr,Fe)7C3NbCNbC
Average grain size/μm35.016.717.3
表3  试验钢的硬度、碳化物和晶粒尺寸随Nb含量的变化
图5  磨损截面的SEM形貌
图6  Nb含量为0.2%试验钢在不同载荷下的摩擦系数
图7  Nb含量为0.2%试验钢在不同载荷下的磨损形貌和能谱
图8  Nb含量为0.2%试验钢在不同载荷下的磨损截面
[1] BernsH, TrojahnW. New cold working tool steels [J]. Interciencia, 1986, 29(12): 660
[2] FilipovicM, KamberovicZ, KoracM, et al. Microstructure and mechanical properties of Fe-Cr-C-Nb white cast irons [J]. Mater. Des., 2013, 47(11): 41
[3] ZhiX, XingJ, FuH, et al. Effect of niobium on the as-cast microstructure of hypereutectic high chromium cast iron [J]. Mater. Lett., 2008, 62(6-7): 857
[4] FisetM, PeevK, RadulovicM. The influence of niobium on fracture toughness and abrasion resistance in high-chromium white cast irons [J]. J. Mater. Sci. Lett., 1993, 12(9): 615
[5] FuH G. 500 Questions of Wear-resistant Material [M]. Beijing: China Machine Press, 2011
[5] (符寒光. 耐磨材料500问 [M]. 北京: 机械工业出版社, 2011)
[6] MaalekianM, RadisR, MilitzerM, et al. In situ measurement and modelling of austenite grain growth in a Ti/Nb microalloyedsteel [J]. Acta Mater., 2012, 60(3): 1015
[7] ZhouL H, WeiX C, WangC Y, et al. Relationship between dry sliding tribological behavior and grain sizes for T10 Steel [J]. Chin. J. Mater. Res., 2017, 31(11): 833
[7] (周路海, 韦习成, 王春燕等. T10钢的干滑动摩擦学行为与晶粒尺寸的关系 [J]. 材料研究学报, 2017, 31(11): 833)
[8] WangS Q, JiangQ C, SuiX M, et al. Wear resistance of ledeburite cast die steel with granular carbide [J]. Tribology, 1999, 19(1): 33
[8] (王树奇, 姜启川, 隋学民等. 具有粒状碳化物的莱氏体型铸造模具钢的耐磨性研究 [J]. 摩擦学学报, 1999, 19(1): 33)
[9] ZhangT, CaoJ, TengL D, et al. Effect of Nb on microstructure and mechanical properties of medium Cr wear-resistant cast steel [J]. China Foundry, 2017, 66(10): 1100
[9] (张 拓, 曹 静, 滕铝丹等. Nb对中铬耐磨铸钢组织及力学性能的影响 [J]. 铸造, 2017, 66(10): 1100)
[10] CITIC microalloying technology center. Niobium Science & Technology [M]. Beijing: Metallurgical Industry Press, 2003
[10] (中信微合金化技术中心. 铌·科学与技术 [M]. 北京: 冶金工业出版社, 2003)
[11] RubtsovV E,KolubeavA V. Plastic deformation and quasi-pe-riodic vibrations in a tribological system [J]. Tech. Phys., 2004, 49 (11): 1457
[12] RubtsovV E, KolubeavA V. Study of plastic shear deformation in surface layer at friction. Simulation results Part I. Model description [J]. J. Frict. Wear, 2007, 28(1): 65
[13] TrummerG, MarteC, ScheriauS, et al. Modeling wear and rolling contact fatigue: Parametric study and experimental results [J]. Wear, 2016, 366: 71
[14] ShiZ, BloyceA, SunY, et al. Influence of surface melting on dry rolling-sliding wear of aluminium bronze against steel [J]. Wear, 1996, 198(1-2): 300
[15] KimH J, EmgeA, WinterR E, et al. Nanostructures generated by explosively driven friction: Experiments and molecular dynamics simulations [J]. Acta Mater., 2009, 57(17): 5270
[16] WangW, SongR, PengS, et al. Multiphase steel with improved impact-abrasive wear resistance in comparison with conventional Hadfield steel [J]. Mater. Des., 2016, 105: 96
[17] YinC, LiangY, JiangY, et al. Formation of nano-laminated structures in a dry sliding wear-induced layer under different wear mechanisms of 20CrNi2Mo steel [J]. Appl. Surf. Sci., 2017, 423: 305
[18] SuhN P. An overview of the delamination theory of wear [J]. Wear, 1977, 44(1): 1
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.