Please wait a minute...
材料研究学报  2019, Vol. 33 Issue (4): 306-312    DOI: 10.11901/1005.3093.2018.422
  本期目录 | 过刊浏览 |
原位微米/纳米TiC颗粒弥散强化304不锈钢的高温蠕变特性
倪自飞1,2(),薛烽1
1. 东南大学材料科学与工程学院 南京 211189
2. 江苏省结构与功能金属复合材料重点实验室 泰州 225721
High Temperature Creep Characteristics of In-Situ Micro-/Nano-meter TiC Dispersion Strengthened 304 Stainless Steel
Zifei NI1,2(),Feng XUE1
1. School of Material Science and Engineering, Southeast University, Nanjing 211189, China
2. Jiangsu Key Laboratory for Structural and Functional Metal Materials Composites, Taizhou 225721, China
引用本文:

倪自飞,薛烽. 原位微米/纳米TiC颗粒弥散强化304不锈钢的高温蠕变特性[J]. 材料研究学报, 2019, 33(4): 306-312.
Zifei NI, Feng XUE. High Temperature Creep Characteristics of In-Situ Micro-/Nano-meter TiC Dispersion Strengthened 304 Stainless Steel[J]. Chinese Journal of Materials Research, 2019, 33(4): 306-312.

全文: PDF(15727 KB)   HTML
摘要: 

以304SS不锈钢为母合金采用原位合成工艺制备微米/纳米TiC颗粒弥散强化304不锈钢(TiC-304SS强化钢),研究了强化钢和母合金的高温蠕变性能。结果表明:原位生成的TiC颗粒大多呈多边形,在母合金中均匀分布且与其良好结合。TiC颗粒的加入对强化钢的母合金晶粒有明显的细化作用。在700/100 MPa蠕变条件下母合金304SS蠕变后晶粒明显长大,且沿应力方向拉长。而TiC颗粒的加入抑制了母合金晶粒的长大,阻止了蠕变变形。显微组织和蠕变性能的结果表明,在强化钢和母合金的蠕变过程中位错的运动符合位错攀移机制。但是与304SS母合金相比,TiC颗粒的加入提高了TiC-304SS强化钢的蠕变表观应力指数和蠕变激活能。门槛应力、载荷传递和微结构的增强,是TiC-304SS强化钢的蠕变增强特征。

关键词 金属材料TiC强化钢高温蠕变应力指数蠕变激活能门槛应力    
Abstract

Micro-/nano-metered TiC particulates dispersion strengthened 304 stainless steel (TiC-304SS strengthened steel) were prepared by in-situ reaction technology with 2% and 5% TiC (in volume fraction) respectively. The high temperature creep properties of the plain 304SS and two TiC-304SS strengthened steels were investigated. The results show that the in situ formed TiC particulates, most of which exhibited polygonal shape, were distributed uniformly in the matrix of 304 SS and are well bonded with the matrix. Moreover, TiC particulates present a significant effect on the grain refinement of the steel matrix. It reveals that being subjected to creep test by100 MPa at 700oC for 200 h, the grains of the plain 304SS grew up evidently with elongated shape along the loading direction, in the contrary, the grain growth tendency of the TiC-304SS strengthened steels seems to be inhibited, thereby, the creep deformation was effectively reduced. The above results imply that dislocation motion in the three steels accords with dislocation climb mechanism. Besides, the values of apparent creep stress exponent and activate energy of the two TiC-304 strengthened steels are higher than that of the plain 304SS. It is proposed that the enhancement of creep performance of TiC-304SS strengthened steel may be ascribed to the enhanced threshold stress and load transfer barrier, as well as the microstructural strengthening effect.

Key wordsmetallic materials    TiC strengthened steel    high temperature creep    stress exponent    creep activation energy    threshold stress
收稿日期: 2018-07-02     
ZTFLH:  TG142  
作者简介: 倪自飞,男,1980年生,博士,高级工程师
图1  三种钢热锻态的显微组织
图2  5TiC-304SS强化钢中的纳米级TiC颗粒
图3  在700℃/100 MPa条件下三种钢的蠕变曲线以及稳态蠕变速率和200 h最大应变
图4  在700℃/100 MPa条件下三种钢蠕变后的显微组织
图5  在700℃/100 MPa条件下母合金304SS不锈钢蠕变前后的TEM组织
图6  在700℃/100 MPa条件下5TiC-304SS蠕变后的TEM组织
图7  三种钢的稳态蠕变速率与应力的关系
图8  三种钢的稳态蠕变速率与温度的关系
AlloynQ/kJ·mol-1
3045.1308.8
2TiC-3045.5345.6
5TiC-3046.1384.5
表1  三种钢的应力指数和蠕变激活能
图9  三种钢的门槛应力
[1] WuC L, ZhangS, ZhangC H, et al. Formation mechanism and phase evolution of in situ synthesizing TiC-reinforced 316L stainless steel matrix composites by laser melting deposition [J]. Materials Letters, 2018, 15(217): 304
[2] DasK, BandyopadhyayT K, ChatterjeeS. Synthesis and characterization of austenitic steel matrix composite reinforced with in-situ TiC particles [J]. Journal Materials Science Letters, 2005, 40(18): 5007
[3] WuQ L, SunY S, YangC D, et al. Microstructure and mechanical properties of common straight carbon steels strengthened by TiC dispersion [J]. Materials Transactions, 2006, 47: 2393
[4] Lahouel,A, Boudebane,S, Iost,A, et al. A new method to fabricate Fe-TiC composite using conventional sintering and steam hammer [J]. International Journal of Engineering Research in Africa, 2017, 29: 28
[5] Liu,Z L, Liu,X Q, Jiang,X D. Investigation on the Fe-based PM materials reinforced by In Situ synthesized TiC particulates [J]. Particulate Science and Technology, 2017, 35(6): 653
[6] OlejnikE, SzymanskiL, KurtykaP, et al. Hardness and Wear resistance of TiC-Fe-Cr locally reinforcement produced in cast steel[J]. Archives of Foundry Engineering, 2016, 16(2): 89
[7] WangJ, FuS J, DingY C. Microstructure and wear property of TiC particles reinforced iron matrix composite produced in-situ [J]. Journal of Sichuan University (Engineering Science Edition), 2008, 40(5): 111
[7] (王 静, 伏思静, 丁义超. 原位合成TiC/Fe基复合材料的组织结构和磨损性能 [J]. 四川大学学报(工程科学版), 2008, 40(5): 111)
[8] SobulaS, OlejnikE, TokarskiT. Wear resistance of TiC reinforced cast steel matrix composite [J]. Archives of Foundry Engineering,2017, 17(1): 143
[9] NiZ F, SunY S, XueF, et al. Study on fabrication, microstructure and properties of in situ TiC particle on dispersion-strengthened 304 stainless steel [J]. Acta Metallurgica Sinica, 2010, 46(8): 935
[9] (倪自飞, 孙扬善, 薛 烽等. 原位TiC颗粒弥散强化304不锈钢的制备及组织性能研究 [J]. 金属学报, 2010, 46(8): 935)
[10] NiZ F, SunY S, XueF, et al. Evaluation of electroslag remelting in TiC particle reinforced 304 stainless steel [J]. Materials Science and Engineering A, 2011, 528(18): 5664
[11] BlumW. On the evolution of the dislocation structure during work hardening and creep [J]. Scripta Metallurgica, 1984, 18(12): 383
[12] GuyA G, HrenJ J. Translated by XU J N. Physical Metallurgy Principles [M]. Beijing :China Machine Press, 1981
[12] (GuyA G, HrenJ J. 徐纪楠译. 物理冶金学原理 [M]. 北京: 机械工业出版社, 1981)
[13] EvansR W, WilshireB. Creep of Metals and Alloys [M]. London: The Institute of Metals, 1985
[14] XuZ Y, LiP X. Introduction to Materials Science [M]. Shanghai: Shanghai Scientific & Technical Publishers, 1986
[14] (徐祖耀, 李鹏兴. 材料科学导论 [M]. 上海: 上海科学技术出版社, 1986)
[15] MengL J, XingH, PangG W, et al. High-temperature creep and fatigue behaviors of AL6XN super austenite steel [J]. Atomic Energy Science and Technology, 2009, 43 (6): 509
[15] (孟丽君, 邢 辉, 庞淦文等. AL6XN超级奥氏体钢的高温蠕变及疲劳行为研究 [J]. 原子能科学技术, 2009, 43(6): 509)
[16] ZhouQ, MaZ Y, ZhaoJ, et al. Creep deformation and fracture of dispersoids and SiC articulates reinforced Al base composites [J]. Acta Metallurgica Sinica, 1998, 34(1): 107
[16] (周 清, 马宗义, 赵 杰等. 弥散质点和SiC颗粒复合强化铝基复合材料蠕变形变与断裂 [J]. 金属学报, 1998, 34(1): 107)
[17] RanganathS, MishraRS. Steady state creep behavior of particulate-reinforced titanium matrix composites [J].Acta Materialia.1996, 44(3): 927
[18] WeiX W, ZuX T, FuH. Compressive creep resistance of Mg-14Li-Al-MgO/Mg2Si composites [J]. Materials Science and Technology, 2006, 22(8): 903
[19] ZongB Y, DerbyB. Creep behaviour of a SiC particulate reinforced Al-2618 metal matrix composite [J]. Acta Materialia, 1997, 45(1): 41
[20] MaZ Y, TjongS C. Creep deformation characteristics of discontinuously reinforced aluminium-matrix composites[J]. Composites Science & Technology, 2001, 61(5): 771
[21] ChenJ, WangZ F, BianJ H, et al. High temperature creep behavior of Fe-Cr-Ni base composites reinforced by in situ TiC particulates [J]. Acta Metallurgica Sinica, 2001, 37(2): 207
[21] (陈 俊, 王执福, 边建华等. 原位TiC颗粒增强Fe-Cr-Ni基复合材料的高温蠕变行为 [J]. 金属学报, 2001, 37(2): 207)
[22] NiZ F, Sun,Y S, XueF, et al. Microstructure and properties of austenitic stainless steel reinforced with in situ TiC particulate [J]. Materials and Design, 2011, 32(3): 1462
[23] WuQ L, SunY S, XueF, et al. High temperature behaviour of TiC particulate reinforced 304 stainless steel by in situ reaction and electroslag remelting [J]. Ironmaking and Steelmaking, 2010, 37(5): 326
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.