Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (9): 706-712    DOI: 10.11901/1005.3093.2018.112
  本期目录 | 过刊浏览 |
TMAH改性聚偏氟乙烯一步法接枝聚PSPMA膜的制备和性能
黄强1, 郭贵宝1(), 安胜利2, 刘金彦1
1 内蒙古科技大学化学与化工学院 包头 014010
2 内蒙古科技大学材料与冶金学院 包头 014010
Preparation and Property of Proton Exchange Membranes Synthesized via One-step Grafting PSPMA onto Poly(vinylidene fluoride) Modified by TMAH
Qiang HUANG1, Guibao GUO1(), Shengli AN2, Jinyan LIU1
1 School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou 014010, China;
2 School of Materials and Metallurgy, Inner Mongolia University of Science & Technology, Baotou 014010, China;
引用本文:

黄强, 郭贵宝, 安胜利, 刘金彦. TMAH改性聚偏氟乙烯一步法接枝聚PSPMA膜的制备和性能[J]. 材料研究学报, 2018, 32(9): 706-712.
Qiang HUANG, Guibao GUO, Shengli AN, Jinyan LIU. Preparation and Property of Proton Exchange Membranes Synthesized via One-step Grafting PSPMA onto Poly(vinylidene fluoride) Modified by TMAH[J]. Chinese Journal of Materials Research, 2018, 32(9): 706-712.

全文: PDF(2136 KB)   HTML
摘要: 

使用四甲基氢氧化铵(TMAH)甲醇溶液改性聚偏氟乙烯(PVDF)一步法接枝聚(3-磺酸丙基甲基丙烯酸)(PSPMA),制备了聚偏氟乙烯接枝聚(3-磺酸丙基甲基丙烯酸)PVDF-g-PSPMA膜。使用傅里叶变换红外光谱(FTIR)和能谱扫描电镜(SEM-EDX)表征了膜的结构、形貌和硫元素分布,并使用电化学综合测试仪和气相色谱仪研究了TMAH对PVDF-g-PSPMA膜电导率和甲醇渗透率的影响。结果表明,TMAH使PVDF脱HF产生碳碳双键并将PSPMA成功接枝到聚偏氟乙烯上,硫元素在膜内外分布均匀。随着TMAH在甲醇溶液中含量的提高PVDF-g-PSPMA膜的质子电导率和甲醇渗透率随之提高;TMAH含量为20%时,膜电导率达到8.39×10-2 S∙cm-1、甲醇渗透率为8.92×10-7 cm2∙s-1。热重分析(TGA)的结果表明,膜的热稳定性良好,耐热温度高达270℃。使用该膜作为电解质材料的直接甲醇燃料电池(DMFC),其功率密度达到18.87 mW∙cm-2

关键词 高分子材料质子交换膜一步法四甲基氢氧化铵聚偏氟乙烯3-磺酸丙基甲基丙烯酸    
Abstract

Methanol solution of tetramethylammonium hydroxide (TMAH) modified poly(vinylidene fluoride) (PVDF) was directly grafted with poly (sulfopropyl methacrylate) via a one-step process to synthesis proton exchange membranes of (PVDF-g-PSPMA). The microstructures, morphologies, and distributions of sulfur in the membrane were characterized using Fourier transform infrared spectroscope (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The influence of the TMAH on proton conductivity and methanol permeability of these membranes were also investigated. Results show that PVDF was dehydrofluorinated by TMAH and produced carbon-carbon double bond. SPMA was successfully grafted onto PVDF, the distribution of sulfur was homogeneous in the interior and surface of the membrane. The proton conductivity and methanol permeability coefficient of the membrane increase with the content of TMAH, and when the content of TMAH was 20% the proton conductivity of membrane was 8.39×10-2 S∙cm-1 at ambient temperature, and the methanol permeability coefficient was 8.92×10-7 cm2∙s-1. Thermo gravimetric analysis (TGA) confirmed that the membranes possess good thermal stability up to approximately 270℃. The peak power density of direct methanol fuel cell (DMFC) assembled with above membrane was 18.87 mW∙cm-2.

Key wordspolymer materials    proton exchange membrane    one-step    poly (vinylidene fluoride)    tetramethyl ammonium hydroxide    poly (sulfopropyl methacrylate)
收稿日期: 2018-01-17     
ZTFLH:  TQ325.4  
基金资助:国家自然科学基金(21463016),内蒙古自治区自然科学基金(2017MS(LH)0515),高等学校科学研究(NJZY18148)
作者简介:

作者简介 黄 强,男,1996年生,本科生

图1  纯PVDF膜、改性PVDF膜和PVDF-g-PSPMA膜的红外光谱图
图2  PVDF-g-PSPMA膜的表面和截面扫描电镜照片
图3  PVDF-g-PSPMA膜的SEM照片和膜截面区域上硫和氟的分布
图4  PVDF-g-PSPMA膜接枝率和质子电导率与TMAH的用量的关系
图5  PVDF-g-PSPMA膜质子电导率和IEC与TMAH的用量的关系
Samples PVDF-g-PSPMA (ωTMAH/%) Nafion 117
4 8 12 16 20 24
TS/MPa 19.1 16.6 14.9 13.7 11.1 9.9 10.4
SD/% 4.7 6.1 8.8 12.2 14.6 17.1 21.4
WU/% 9.6 11.5 19.6 25.4 29.1 33.4 24.6
表1  试样膜的拉伸强度(TS)、溶胀度(SD)和吸水率(WU)
图6  TMAH用量对甲醇渗透率的影响
图7  PVDF-g-PSPMA膜和纯PVDF膜的热失重曲线
图8  PVDF-g-PSPMA和Nafion 117膜的单电池开路电压
图9  电导率(σ)与最大功率密度关系
[1] Kumar P, Dutta K, Das S, et al.Membrane prepared by incorporation of crosslinked sulfonated polystyrene in the blend of PVdF-co-HFP/Nafion: A preliminary evaluation for application in DMFC[J]. Appl. Energ., 2014, 123: 66
[2] Dutta K, Das S, Kumar P, et al.Polymer electrolyte membrane with high selectivity ratio for direct methanol fuel cells: A preliminary study based on blends of partially sulfonated polymers polyaniline and PVdF-co-HFP[J]. Appl. Energ., 2014, 118: 183
[3] Yang C C, Lue S J, Shih J Y.A novel organic/inorganic polymer membrane based on poly(vinyl alcohol)/poly(2-acrylamido-2-methyl-1-propanesulfonic acid/3-glycidyloxypropyl trimethoxysilane polymer electrolyte membrane for direct methanol fuel cells[J]. J. Power Sources, 2011, 196: 4458
[4] Kim Y W, Lee D K, Lee K J, et al.Single-step synthesis of proton conducting poly(vinylidene fluoride) (PVDF) graft copolymer electrolytes[J]. Eur. Polym. J., 2008, 44: 932
[5] Nasef M M, Saidi H, Dahlan K Z M. Single-step radiation induced grafting for preparation of proton exchange membranes for fuel cell[J]. J. Membrane Sci., 2009, 339: 115
[6] Golcuk S, Muftuoglu A E, Celik S U, et al.Synthesis and characterization of polymer electrolyte membranes based on PVDF and styrene via photoinduced grafting[J]. J. Polym. Res., 2013, 20: 144
[7] Zhang S C, Shen J, Qiu X P, et al.ESR and vibrational spectroscopy study on poly(vinylidene fluoride) membranes with alkaline treatment[J]. J. Power Sources, 2006, 153: 234
[8] Shinohara H.Fluorination of polyhydrofluoroethylenes. II. Formation of perfluoroalkyl carboxylic acids on the surface region of poly(vinylidene fluoride) film by oxyfluorination, fluorination, and hydrolysis[J]. J. Polym. Sci., 1979, 17A: 1543
[9] Wang C W, Liang C J.Oxidative degradation of TMAH solution with UV persulfate activation[J]. Chem. Eng. J., 2014, 254: 472
[10] Xing Q Y, Pei W W, Xu R Q, et al.Basic Organic Chemistry (3rd Ed.) [M]. Beijing: Higher Education Press, 2005(刑其毅, 裴伟伟, 徐瑞秋等. 基础有机化学(第3版) [M]. 北京: 高等教育出版社, 2005)
[11] Mikhailenko S D, Guiver M D, Kaliaguine S.Measurements of PEM conductivity by impedance spectroscopy[J]. Solid State Ionics, 2008, 179: 619
[12] Weiss R A, Sen A, Willis C L, et al.Block copolymer ionomers: 1. Synthesis and physical properties of sulphonated poly(styrene-ethylene/butylene-styrene)[J]. Polymer, 1991, 32: 1867
[13] Yang C C, Lee Y J, Yang J M.Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes[J]. J. Power Sources, 2009, 188: 30
[14] Ross G J, Watts J F, Hill M P, et al.Surface modification of poly(vinylidene fluoride) by alkaline treatment1. The degradation mechanism[J]. Polymer, 2000, 41: 1685
[15] Brewis D M, Mathieson I, Sutherland I, et al.Pretreatment of poly(vinyl fluoride) and poly(vinylidene fluoride) with potassium hydroxide[J]. Int. J. Adhes. Adhes., 1996, 16: 87
[16] Tricoli V, Carretta N, Bartolozzi M.A comparative investigation of proton and methanol transport in fluorinated ionomeric membranes[J]. J. Electrochem. Soc., 2000, 147: 1286
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 杨琴, 王振, 房春娟, 王若迪, 高大航. 力学性能可控的CMC/AA/CB[8]/BET凝胶的制备及其吸附性[J]. 材料研究学报, 2022, 36(8): 628-634.
[5] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[6] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[7] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[8] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[9] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[10] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[11] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[12] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[13] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[14] 徐春萍, 陈春悦, 张永航, 龚维, 班大明. 含磷聚合物型阻燃剂(PMP)对乙烯基酯树脂(VER)的阻燃改性[J]. 材料研究学报, 2021, 35(11): 843-849.
[15] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.