Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (8): 631-640    DOI: 10.11901/1005.3093.2017.543
  研究论文 本期目录 | 过刊浏览 |
镀锌钢在模拟广州地区大气环境中的室内加速腐蚀研究
王劲1, 黄青丹1, 刘静1, 张亚茹1, 乔创2, 郝龙3, 董俊华3(), 柯伟3
1 广州供电局有限公司电力试验研究院 广州 510410
2 河南农业大学林学院 郑州 450002
3 中国科学院金属研究所 材料环境腐蚀研究中心 沈阳 110016
Accelerated Indoor Corrosion of Galvanized Steel in a Simulated Atmospheric Environment of Guangzhou Area
Jin WANG1, Qingdan HUANG1, Jing LIU1, Yaru ZHANG1, Chuang QIAO2, Long HAO3, Junhua DONG3(), Wei KE3
1 Electric power test and Research Institute, Guangzhou Power Supply Co. Ltd. (GZPS), Guangzhou 510410, China
2 College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
3 Environmental Corrosion Center of Materials, Institute of Metal Research,
引用本文:

王劲, 黄青丹, 刘静, 张亚茹, 乔创, 郝龙, 董俊华, 柯伟. 镀锌钢在模拟广州地区大气环境中的室内加速腐蚀研究[J]. 材料研究学报, 2018, 32(8): 631-640.
Jin WANG, Qingdan HUANG, Jing LIU, Yaru ZHANG, Chuang QIAO, Long HAO, Junhua DONG, Wei KE. Accelerated Indoor Corrosion of Galvanized Steel in a Simulated Atmospheric Environment of Guangzhou Area[J]. Chinese Journal of Materials Research, 2018, 32(8): 631-640.

全文: PDF(5189 KB)   HTML
摘要: 

采用室内干/湿交替模拟大气腐蚀试验方法(CCT)、腐蚀失重、扫描电子显微镜(SEM)、X-射线衍射(XRD)、拉曼光谱(Raman)等手段,研究了输电杆塔用热浸镀锌钢在模拟广州地区大气环境条件下的腐蚀动力学、产物形貌与结构、相组成等性质的演化。结果表明:在当前模拟条件下,单位面积镀锌钢在实验室120 cycles后的腐蚀失重量与广州地区实场曝晒6个月的腐蚀失重量相当;镀锌钢120 cycles的腐蚀过程分为两个阶段,初期腐蚀速率较大,锈层较薄、疏松、多孔、不连续、与基体结合不紧密;随着腐蚀周期的延长,腐蚀速率明显降低,锈层逐渐增厚、致密、完整连续、与基体结合紧密的内锈层逐渐形成。此外,镀锌钢大气腐蚀产物主要由ZnO、Zn(OH)2、ZnCO3、ZnSO4、Zn5(OH)6(CO3)2、Zn4(OH)6SOxH2O、Zn5(OH)8Cl2和Zn12(OH)15Cl3(SO4)3等组成,但结晶度不高;随着腐蚀周期的延长,锈层中稳定性相Zn4(OH)6SOxH2O和Zn5(OH)6(CO3)2含量逐渐增多,不稳定性相Zn12(OH)15Cl3(SO4)3含量逐渐减少。

关键词 材料失效与保护输电杆塔镀锌钢热镀锌大气腐蚀二氧化硫氯离子    
Abstract

The corrosion kinetics and corrosion product of galvanized steel, which is widely used for making power transmission tower, in a simulated atmosphere of Guangzhou area were investigated by means of wet/dry-cyclic corrosion test (CCT), scanning electron microscopy (SEM), X-ray diffractometer (XRD) and Raman spectroscopy (Raman). Results indicate that, under the present simulated conditions, the corrosion weight loss of galvanized steel after 120 cycles test by CCT is equivalent to that of the same steel exposed to the atmosphere at a designed test site at Guangzhou area for 6 months. The corrosion process of the CCT test can be divided into two stages, and the corrosion rate in the early corrosion stage is relatively higher and the corrosion product scale is thin, loose and porous with poor adhesion to the matrix. With the progress of corrosion, the corrosion rate decreases obviously, and the corrosion product scale gradually becomes thicker and compact with good adhesion to the matrix, while an inner rust layer emerges. In addition, the corrosion product of the Zn-coating consists of ZnO, Zn(OH)2, ZnCO3, ZnSO4, Zn5(OH)6(CO3)2, Zn4(OH)6SOxH2O, Zn5(OH)8Cl2, and Zn12(OH)15Cl3(SO4)3, however, which present rather low crystallization degree. As the corrosion process proceeds, among others, the proportion of stable phases of Zn4SO4(OH)xH2O and Zn5(OH)6(CO3)2 increases, while that of the unstable phase of Zn12(OH)15Cl3(SO4)3 decreases.

Key wordsmaterials failure and protection    electricity transmission tower    galvanized steel    hot-dip Zn coating    atmospheric corrosion    SO2    Cl-
收稿日期: 2017-09-13     
ZTFLH:  TG146.2  
基金资助:资助项目 沿海大型城市复杂大气环境下输电线路杆塔腐蚀分布及防腐措施研究(GZM2014-2-0004)
作者简介:

作者简介 王 劲, 男, 1977年生, 高工

Item SO42-/mg·L-1 Cl-/mg·L-1 pH Rainfall/mm Temperature/℃ RH/%
Value 5.66 2.01 5.77 1746 22.9 83
表1  广州市降雨年平均数据分析结果
Composition Deposition rate Concentration Concentrating times number Reference/Data processing method
/mg·dm-2·d-1 /mg·L-1
NaCl 0.024 16.48 5 Cl- deposition rate in Guangzhou city ,obtained from China natural environment corrosion web
Na2SO3 11.69 95.95 5 SO2 deposition rate was calculated by interpolation method, according to the relationship between the SO2 concentration in air and its deposition rate, and the SO2 concentration in Table 1 (GB/T 19292.1-2003 appendix A, Table A.1) [14]
Na2CO3 / 546.69 1 Calculated from the natural dissolved equilibrium of CO2 in water at standard atmospheric pressure
Room temperature, pH = 5.77 Obtained from the annual average analysis results of rainfall of Guangzhou environmental data
表2  室内加速腐蚀模拟溶液组成与来源
图1  实场曝晒条件下镀锌层厚度随曝晒时间的腐蚀减薄
图2  实验室模拟大气腐蚀条件下镀锌层厚度减薄与腐蚀速率随腐蚀周期的演化
图3  模拟大气腐蚀条件下镀锌钢腐蚀不同周期后的表面及截面SEM照片
图4  镀锌钢表面腐蚀产物形貌演化的SEM观察
图5  镀锌钢表面不同形状腐蚀产物的EDX谱
图6  不同腐蚀周期后镀锌钢表面腐蚀产物的XRD物相分析
图7  镀锌钢腐蚀120 cycles后表面腐蚀产物的Raman光谱表征
[1] Chen Y, Xu L M, Yao N N, et al.Atmospheric corrosion and protection of steel components for transmission and distribution projects[J]. North China Electr. Power, 2014, (12): 10(陈云, 徐利民, 药宁娜等. 输变电钢构件的大气腐蚀与防护[J]. 华北电力技术, 2014, (12): 10)
[2] Mo Z L, Cheng Z Y.Corrosion and prevention of zinc deposit of transmission towers[J]. Electr. Power Constr., 2004, 25(1): 22(默增禄, 程志云. 输电线路杆塔的腐蚀与防治对策[J]. 电力建设, 2004, 25(1): 22)
[3] Liu F, Song H Q, Huang Z R, et al.Anti-corrosion properties of protective coatings for transmission line iron tower in coastal area[J]. Equip. Environ. Eng., 2015, 12(4): 76(刘峰, 宋弘清, 黄政然等. 沿海地区输电铁塔防护涂层耐腐蚀性能研究[J]. 装备环境工程, 2015, 12(4): 76)
[4] Yuan H J, Zhang J X, Ji X W, et al.Corrosion behavior of galvanized steel for power transmission tower in polluted environment[J]. Corros. Sci. Prot. Technol., 2013, 25: 13(原徐杰, 张俊喜, 季献武等. 电力输电杆塔用镀锌钢在污染环境中的腐蚀行为研究[J]. 腐蚀科学与防护技术, 2013, 25: 13)
[5] Chen T, Tan T, Hong Y C, et al.Corrosion and protection of hot-dipped components in power transmission grid[J]. Electr. Power, 2013, 46(11): 1(陈彤, 谈天, 洪毅成等. 输电网镀锌金属部件的腐蚀与防护[J]. 中国电力, 2013, 46(11): 1)
[6] Wang P, Sun X L, Ma D W.Investigation and analysis of atmospheric corrosion in power transmission and transformation equipment[J]. Corros. Sci. Prot. Technol., 2012, 24: 525(王平, 孙心利, 马东伟. 输变电设备大气腐蚀情况调查与分析[J]. 腐蚀科学与防护技术, 2012, 24: 525)
[7] Liu X.Research on the destruction caused by stress corrosion to the galvanized steel coating of electric power tower [D]. Ji’nan: Shandong University, 2015(刘霄. 输电线杆塔镀锌钢镀层应力腐蚀破坏研究 [D]. 济南: 山东大学, 2015)
[8] Ma D W, Wang P, Ren H T.Corrosion and protection technology of transmission line iron tower by the sea[J]. Total Corros. Control, 2013, 27(11): 37(马东伟, 王平, 任汉涛. 滨海输变电线路铁塔腐蚀与防护技术探讨[J]. 全面腐蚀控制, 2013, 27(11): 37)
[9] Liu L R, Yong X Y, Guo F Y.Research on the corrosion of metallic components of overhead contact system in typical atmospheric environment[J]. J. Railway Eng. Soc., 2015, (3): 81(刘莉蓉, 雍兴跃, 郭奉迎. 电气化接触网零部件在典型环境的腐蚀研究[J]. 铁道工程学报, 2015, (3): 81)
[10] Zhang J J.Analysis of anticorrosion mechanism and characteristics of hot-dip galvanizing strip[J]. Sci. Guide, 2014, (7): 167(张晶晶. 热镀锌带防腐机理与特点浅析[J]. 科技导报, 2014, (7): 167)
[11] Ke W.Investigation Report on Corrosion in China [M]. Beijing: Chemical Industry Press, 2003(柯伟. 中国腐蚀调查报告 [M]. 北京: 化学工业出版社, 2003)
[12] Zhang H, Du C W, Li X G, et al.Effect of pH on electrochemical corrosion behavior of hot galvanized and IF steel substrates in NaCl solution [A]. The 11st Annual Conference on Corrosion Resistant Metal Materials Symposium[C]. Baotou: Chinese Society for Corrosion and Protection, 2008(张红, 杜翠薇, 李晓刚等. pH值对热镀锌汽车板和IF钢基板在NaCl溶液中电化学腐蚀行为的影响 [A]. 中国腐蚀与防护学会第十一届耐蚀金属材料学术年会论文集[C]. 包头: 中国腐蚀与防护学会, 2008)
[13] Kong G, Lu J T, Che C S, et al.Analyses of formation of white rust on hot dip galvanized steel and relevant countermeasures[J]. Corros. Prot., 2005, 26: 450(孔纲, 卢锦堂, 车淳山等. 热镀锌钢白锈产生原因分析及预防[J]. 腐蚀与防护, 2005, 26: 450)
[14] ISO9223. Corrosion of metals and alloys-classification of the corrosivity of atmospheres[S].
[15] ISO9224. Corrosion of metals and alloys-guiding values for the corrosivity of atmospheres[S].
[16] ISO9225. Corrosion of metals and alloys-aggressively of atmoshpheres-methods of measurement of pollution data[S].
[17] ISO9226. Corrosion of metals and alloys-corrosivity of atmoshpheres-methods of determination of corrosion rate of standard speciments for the evaluation of corrosivity[S].
[18] Yuan X H, Zhang Q F.Electrochemical analysis of the phase structures of galvannealed coatings [A]. The 6th China Corrosion Conference[C]. Beijing, 2011
[19] Hao L, Zhang S X, Dong J H, et al.Evolution of atmospheric corrosion of MnCuP weathering steel in a simulated coastal-industrial atmosphere[J]. Corros. Sci., 2012, 59: 270
[20] Shang X L.Influences of Mn and Sb elements on the corrosion behaviour of zinc [D]. Shenyang: Institute of Metal Research Chinese Academy of Sciences, 2012(尚秀玲. 锰和锑元素对锌腐蚀的影响及其机理研究 [D]. 沈阳: 中国科学院金属研究所, 2012)
[21] Shi H R, Wei W J, Ding Y, et al.Microstructures and salt spray corrosion behaviors of hot-dip Zn and 55Al-Zn coatings[J]. Mater. Prot., 2002, 35(3): 35(石焕荣, 魏无际, 丁毅等. 热镀锌和锌铝合金镀层的微观组织及盐雾腐蚀行为[J]. 材料保护, 2002, 35(3): 35)
[22] Zhang D L, Li Y.Effect of humidity on hydrogen embrittlement susceptivity of hot-dip galvanized steel exposed to simulated marine atmosphere[J]. Chin. J. Nonferr. Met., 2010, 20: 476(张大磊, 李焰. 湿度对热镀锌钢材在海洋大气环境中氢脆敏感性的影响[J]. 中国有色金属学报, 2010, 20: 476)
[23] Zhang D L, Wang W, Li Y.Wire beam electrode technique for investigating galvanic corrosion behavior of hot-dip galvanized steel-scratch defect[J]. Chin. J. Mater. Res., 2009, 23: 343(张大磊, 王伟, 李焰. 热镀锌钢材的电偶腐蚀行为-划痕型缺陷[J]. 材料研究学报, 2009, 23: 343)
[24] Shi Y Y, Zhang Z, Zhang J Q, et al.Review of atmospheric corrosion of zinc and zinc alloy[J]. J. Chin. Soc. Corros. Prot., 2005, 25: 373(施彦彦, 张昭, 张鉴清等. 锌及其合金的大气腐蚀研究现状[J]. 中国腐蚀与防护学报, 2005, 25: 373)
[25] Friel J J.Atmospheric corrosion products on Al, Zn, and AlZn metallic coatings[J]. Corrosion, 1986, 42: 422
[26] Flinn D R, Cramer S D, Carter J P, et al.ACS symposium series 318 [A]. Baboian R. Materials Degradation Caused by Acid Rain[M]. Washington D.C.: American Chemical Society, 1986: 119
[27] Odnevall I, Westdahl M.Zinc chlorohydroxosulfates: Newly-discovered corrosion products on zinc. Structure determination of NaZn4Cl(OH)6SO4·6H2O and x-ray study of Zn4Cl2(OH)4SO4·5H2O[J]. Corros. Sci., 1993, 34:1231
[28] Odnevall I, Leygraf C.Formation of NaZn4Cl(OH)6SO4·6H2O in a marine atmosphere[J]. Corros. Sci., 1993, 34:1213
[29] Odnevall I, Leygraf C.A comparison between analytical methods for zinc specimens exposed in a rural atmosphere[J]. J. Electrochem. Soc., 1991, 138: 1923
[30] Odnevall I, Leygraf C.The formation of Zn4Cl2(OH)4SO4·5H2O in an urban and an industrial atmosphere[J]. Corros. Sci., 1994, 36: 1551
[31] Hales M C, Frost R L.Synthesis and vibrational spectroscopic characterisation of synthetic hydrozincite and smithsonite[J]. Polyhedron, 2007, 26: 4955
[32] Bernard M C, Hugot-Le Goff A, Massinon D, et al. Underpaint corrosion of zinc-coated steel sheet studied by in situ raman spectroscopy[J]. Corros. Sci., 1993, 35: 1339.
[33] Teeters D, Frech R.Raman and infrared reflectivity spectra of 6LiNaSO4 and 7LiNaSO4[J]. J. Chem. Phys., 1982, 76: 799
[34] Secco E A.Infrared spectra of LiNaSO4[J]. J. Chem. Phys., 1983, 79: 5208
[35] Cazzanelli E, Frech R.Raman spectra of 7Li2SO4 and 6Li2SO4[J]. J. Chem. Phys., 1983, 79: 2615
[36] Jayasree R S, Mahadevan Pillai V P, Nayar V U, et al. Raman and infrared spectral analysis of corrosion products on zinc NaZn4Cl-(OH)6SO4·6H2O and Zn4Cl2(OH)4SO4·5H2O[J]. Mater. Chem. Phys., 2006, 99: 474
[37] Yang W Q, Liu H Z, Wang P, et al.Study on anti-corrosion property of different kinds of galvanized steel sheet[J]. Total Corros. Control, 2015, 29(5): 28(杨文谦, 刘翰志, 王鹏等. 不同种类镀锌板抗腐蚀性能研究[J]. 全面腐蚀控制, 2015, 29(5): 28)
[38] Zhang X G.Translated by Zhong H F, Cheng D M. Electrochemical Corrosion of Zinc [M]. Beijing: Metallurgical Industry Press, 2008(章小鸽著. 仲海峰, 程东妹译. 锌的腐蚀与电化学 [M]. 北京: 冶金工业出版社, 2008)
[39] Biestek T, Drys M, Sokolov N, et al.Atmospheric corrosion of metallic systems. Part V. Identification of the chemical compounds in the corrosion products of zinc[J]. Zashch. Met., 1983, 19: 750
[40] Liu J, Huang Q D, Zhang Y R, et al.Atmospheric corrosion of hot-dip Zn coating on transmission tower and the corrosion influencing factors[J]. Corros. Sci. Prot. Technol., 2016, 28: 570(刘静, 黄青丹, 张亚茹等. 输电杆塔用热浸镀锌的大气腐蚀及影响因素[J]. 腐蚀科学与防护技术, 2016, 28: 570)
[1] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[4] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[6] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[7] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[8] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[9] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[10] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[11] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[12] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[13] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[14] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.
[15] 段体岗, 黄国胜, 马力, 彭文山, 张伟, 许立坤, 林志峰, 何华, 毕铁满. Q235/Ni-Co基自修复涂层的制备和耐蚀性能[J]. 材料研究学报, 2020, 34(10): 777-783.