Please wait a minute...
材料研究学报  2018, Vol. 32 Issue (7): 533-540    DOI: 10.11901/1005.3093.2017.642
  研究论文 本期目录 | 过刊浏览 |
亚硫酸盐对热镀锌钢材在海洋大气环境中氢吸收行为的影响
张大磊(), 妙圆圆, 荆赫, 豆肖辉, 金有海
中国石油大学(华东)机电工程学院 青岛 266580
Effect of Sulphite Deposits on Hydrogen Embrittlement Susceptivity of Hot-dip Galvanized Steel in Marine Atmospheric Environment
Dalei ZHANG(), Yuanyuan MIAO, He JING, Xiaohui DOU, Youhai JIN
College of Mechanical and Electronic Engineering, China University of Petroleum (East China), Qingdao 266580, China
引用本文:

张大磊, 妙圆圆, 荆赫, 豆肖辉, 金有海. 亚硫酸盐对热镀锌钢材在海洋大气环境中氢吸收行为的影响[J]. 材料研究学报, 2018, 32(7): 533-540.
Dalei ZHANG, Yuanyuan MIAO, He JING, Xiaohui DOU, Youhai JIN. Effect of Sulphite Deposits on Hydrogen Embrittlement Susceptivity of Hot-dip Galvanized Steel in Marine Atmospheric Environment[J]. Chinese Journal of Materials Research, 2018, 32(7): 533-540.

全文: PDF(3794 KB)   HTML
摘要: 

采用改进的Devanathan双面电解池检测了热镀锌钢材的氢渗透电流,结合慢应变速率拉伸试验和断口形貌分析,研究了受工业海洋大气污染有亚硫酸盐沉积的热镀锌钢材氢吸收行为及其在此环境中的氢脆敏感性。结果表明:随着试样表面亚硫酸盐的增加,其氢渗透电流显著增大;镀层缺陷使试样的氢渗透电流增大,且亚硫酸盐与镀层表面的缺陷协同效应进一步促进热浸镀钢材的氢吸收行为;氢吸收降低了热镀锌钢材的断后延伸率,表明海洋大气中的亚硫酸盐污染物会降低热镀锌钢材的韧性,导致氢损伤。

关键词 材料失效与保护氢渗透大气腐蚀慢应变速率拉伸实验热浸镀锌层氢脆    
Abstract

Hydrogen permeation and embitterment behavior of hot-dip galvanized steel with different amount of sulphite deposits on surface exposed to stimulant marine atmospheric environment was investigated. The hydrogen embrittlement susceptivity of the steel in this environment was assessed through measuring the hydrogen permeation current by an improved Devanathan-Stachurski cell and the elongation of the galvanized steel at break, while observing the morphology of the fractured surface. Results indicated that the hydrogen permeation current gradually increased with the increasing amount of deposits. On the other hand, it was found that hydrogen absorption was accelerated by the synergistic effect of cathodic protection and the existed damage of zinc coating induced by scratching. The adsorbed hydrogen can reduce the elongation of the steel at break. This means that sulphite can reduce the toughness of hot-dip galvanized steel, resulting in hydrogen damage.

Key wordsmaterial failure and protection    hydrogen permeation    atmospheric corrosion    slow strain rate tensile test    hot-dip galvanized coating    hydrogen embrittlement
收稿日期: 2017-10-30     
ZTFLH:  TG174.41  
基金资助:国家自然科学基金(51774314),中央高校基本科研业务资助基金(16CX05011A)
作者简介:

作者简介 张大磊,男,1983年生,博士,讲师

Element C Si Mn S P Al Fe
Mass fraction/% 0.03 0.17 0.50 0.25 0.035 0.002 Bal.
表1  热镀锌钢材基体的化学组成
图1  拉伸试样示意图
图2  不同亚硫酸钠沉积量的完整镀锌层试样的氢渗透电流曲线(30℃, 80%RH)
Deposition amounts of Na2SO3 / g·cm-2 0 0.5×10-5 1.0×10-5
Maximum current density / μA·cm-2 0.300 0.699 1.091
Average current density / μA·cm-2 0.141 0.323 0.396
表2  热镀锌钢材在不同亚硫酸钠沉积条件下的氢渗透电流密度最大值和平均值 (30℃, 80%RH)
图3  不同亚硫酸钠沉积量的4 mm缺陷镀锌层试样的氢渗透电流曲线(30℃, 80%RH)
Deposition amounts of Na2SO3 / g·cm-2 0 0.5×10-5 1.0×10-5
Maximum current density / μA·cm-2 0.773 1.118 1.991
Average current density / μA·cm-2 0.323 0.471 0.480
表3  不同亚硫酸钠沉积量的4 mm缺陷镀锌层氢试样的渗透电流密度最大值和平均值(30℃, 80%RH)
图4  不同亚硫酸钠沉积量的10 mm缺陷镀锌层试样的氢渗透电流曲线(30℃, 80%RH)
Deposition amounts of Na2SO3 / g·cm2 0 0.5×10-5 1.0×10-5
Maximum current density / μA·cm-2 0.092 1.704 2.959
Average current density / μA·cm-2 0.052 0.686 1.567
表4  不同亚硫酸钠沉积量的10 mm缺陷镀锌层试样的氢渗透电流密度最大值和平均值 (30℃, 80%RH)
Deposition amounts of Na2SO3 / g·cm-2 0 0.5×10-5 1.0×10-5
Without defect 0.091 0.108 0.145
4 mm defect 0.130 0.128 0.193
10 mm defect 0.025 0.388 0.911
表5  热镀锌钢材在不同环境条件下氢渗透电量(库仑)
图5  热浸镀锌钢材的应力-应变曲线
Type of test Tensile strength/MPa Elongation after fracture/% Change rate of elongation/%
B1 363.6 22.62 -
B2 364.1 22.18 -1.95
B3 367.2 21.71 -4.02
B4 365.0 21.15 -6.49
B5 361.4 20.91 -7.56
表6  热浸镀锌钢材的力学性能参数
图6  B1试样拉伸断口微观形貌
图7  B4试样的拉伸断口微观形貌
图8  B5试样拉伸断口微观形貌
[1] Wang X M.Research on corrosion behavior of zinc in the atmosphere via atmospheric corrosion monitor [D]. Ji'nan:Shandong University, 2016(王晓明. 基于大气腐蚀检测仪的锌在大气环境中腐蚀行为的研究[D]. 济南: 山东大学, 2016)
[2] Huang Y L, Zheng C B.Theory and Application of Hydrogen Embrittlement of Steel Atmospheric Corrosion in Marine Environment [M]. Beijing: Science Press, 2016(黄彦良, 郑传波. 海洋大气腐蚀环境下钢材氢脆理论及应用 [M]. 北京: 科学出版社, 2016)
[3] Zheng C B, Huang Y L, Wang X, et al.Effect of SO2 in marine atmosphere on corrosion, fracture and hydrogen permeation of 16Mn steel[J]. Mater. Protect ., 2011, 44(5): 34(郑传波, 黄彦良, 王旭等. 海洋大气中SO2含量对16Mn钢腐蚀断裂及渗氢行为的影响[J]. 材料保护, 2011, 44(5): 34)
[4] Narkevi?ius A, Bu?inskien? D, Ru?inskien? A, et al.Study on long term atmospheric corrosion of electrodeposited zinc and zinc alloys[J]. Trans. IMF, 2013, 91: 68
[5] Li S X, Hihara L H.In situ Raman spectroscopic study of NaCl particle-induced marine atmospheric corrosion of carbon steel[J]. J. Electrochem. Soc ., 2012, 159: C147
[6] Yadav A P, Nishikata A, Tsuru T.Electrochemical impedance study on galvanized steel corrosion under cyclic wet-dry conditions-influence of time of wetness[J]. Corros. Sci ., 2004, 46: 169
[7] Zhang J, Yu Z H, Li Y.Corrosion behavior of hot-dipped Zn-55%Al-Si coated steel wires in seawater[J]. Chin. J. Mater. Res ., 2008, 22(4): 347(张杰, 于振花, 李焰. Zn-55%Al-Si合金镀层钢丝在海水中的耐蚀性能[J]. 材料研究学报, 2008, 22(4): 347)
[8] Liao J Y.Analysis on the Invalidation of Metal [M]. Beijing: Chemical Industry Press, 2003: 211(廖景娱. 金属构件失效分析 [M]. 北京: 化学工业出版社, 2003: 211)
[9] Zhang D L, Li Y.Hydrogen permeation of hot-dip galvanized steel exposed to simulated marine atmosphere[J]. Chinese J. Mater. Res ., 2009, 23: 592(张大磊, 李焰. 热镀锌钢材在海洋大气环境中的氢渗透行为[J]. 材料研究学报, 2009, 23: 592)
[10] Zhang D L, Li Y.Effect of humidity on hydrogen embrittlement susceptivity of hot-dip galvanized steel exposed to simulated marine atmosphere[J]. Chin. J. Nonferrous Met ., 2010, 20: 476(张大磊, 李焰. 湿度对热镀锌钢材在海洋大气环境中氢脆敏感性的影响[J]. 中国有色金属学报, 2010, 20: 476)
[11] GB/T 228-2002 228-2002. Metallic materials—Tensile testing at ambient temperature [S]. Beijing: China Standard Publishing House, 2002(GB/T 228-2002 228-2002. 金属材料室温拉伸试验方法 [S]. 北京: 中国标准出版社, 2002)
[12] GB/T 228.1-2010. Metallic materials-tensile testing-part 1: Method of test at room temperature [S]. Beijing: China Standard Publishing House, 2011(GB/T 228.1-2010. 金属材料拉伸试验第1部分: 室温试验方法 [S]. 北京: 中国标准出版社, 2011)
[13] Zhang J B, Wang J, Wang Y H.The deliquescence and spreading of sea salt particles on carbon steel and atmospheric corrosion[J]. Mar. Sci ., 2005, 29(7): 17(张际标, 王佳, 王燕华. 海盐粒子沉积下碳钢的大气腐蚀初期行为[J]. 海洋科学, 2005, 29(7): 17)
[14] Neufeld A K, Cole I S, Bond A M, et al.The initiation mechanism of corrosion of zinc by sodium chloride particle deposition[J]. Corros. Sci ., 2002, 44: 555
[15] Zhang D L, Wang W, Jin Y H, et al.Wire beam electrode technique for investigating galvanic corrosion behavior of galvanized steel-spot defect[J]. Chin. J. Nonferrous Met ., 2011, 21: 2168(张大磊, 王伟, 金有海等. 丝束电极研究镀锌层存在点缺陷的锌/钢电偶腐蚀行为[J]. 中国有色金属学报, 2011, 21: 2168)
[16] Yadav A P, Nishikata A, Tsuru T.Degradation mechanism of galvanized steel in wet-dry cyclic environment containing chloride ions[J]. Corros. Sci ., 2004, 46: 361
[17] Hajjami A E, Gigandet M P, De Petris-Wery M, et al. Hydrogen permeation inhibition by zinc-nickel alloy plating on steel XC68[J]. Appl. Surf. Sci ., 2008, 255: 1654
[18] Wen L, Jin Y, Cheng J, et al.Galvanic corrosion behavior of zinc/steel couple under thin electrolyte layer[J]. ECS Trans ., 2014, 58: 13
[19] Zhou P W, Li W, Jin X J.Comparison of hydrogen permeation properties of pure Ni, Ni-MoS2, Ni-graphene composite coatings deposited on quenching and partitioning steel and the hot-dipping galvanized steel[J]. J. Electrochem. Soc ., 2017, 164: D394
[20] Zheng C, Huang Y, Huo C, et al.Hydrogen permeation behavior and corrosion monitoring of steel in cyclic wet-dry atmospheric environment[J]. Mater. Corros ., 2007, 58: 716
[21] Yamabe J, Yoshikawa M, Matsunaga H, et al.Hydrogen trapping and fatigue crack growth property of low-carbon steel in hydrogen-gas environment[J]. Int. J. Fatigue, 2017, 102: 202
[22] Liang Y, Ahn D C, Sofronis P, et al.Effect of hydrogen trapping on void growth and coalescence in metals and alloys[J]. Mech. Mater ., 2008, 40: 115
[23] Recio F J, Alonso M C, Gaillet L, et al.Hydrogen embrittlement risk of high strength galvanized steel in contact with alkaline media[J]. Corros. Sci ., 2011, 53: 2853
[1] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[2] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[3] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[4] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[5] 张渤涛, 李淑慧, 李永丰, 韩国丰. 应力三轴度对淬火态硼钢氢脆敏感性的影响[J]. 材料研究学报, 2022, 36(10): 739-746.
[6] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[7] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[8] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[9] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[10] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[11] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[12] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[13] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[14] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[15] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.