Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (5): 321-328    DOI: 10.11901/1005.3093.2016.366
  论文 本期目录 | 过刊浏览 |
KOH活化硅藻土模板炭及其电化学性能研究
李爱军, 传秀云(), 黄杜斌, 曹曦
北京大学地球与空间科学学院 造山带与地壳演化教育部重点实验室 北京 100871
KOH Activation of Diatomite-templated Carbon and Its Electrochemical Property in Supercapacitor
Aijun LI, Xiuyun CHUAN(), Dubin HUANG, Xi CAO
Key Laboratory of Orogenis Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China
引用本文:

李爱军, 传秀云, 黄杜斌, 曹曦. KOH活化硅藻土模板炭及其电化学性能研究[J]. 材料研究学报, 2017, 31(5): 321-328.
Aijun LI, Xiuyun CHUAN, Dubin HUANG, Xi CAO. KOH Activation of Diatomite-templated Carbon and Its Electrochemical Property in Supercapacitor[J]. Chinese Journal of Materials Research, 2017, 31(5): 321-328.

全文: PDF(5034 KB)   HTML
摘要: 

以硅藻土为模板,糠醇为碳源,合成了模板炭材料,并用KOH活化制备多孔炭材料。利用XRD、拉曼光谱、SEM及N2吸附对其结构进行表征,并对比研究了活化前后炭材料的电化学性能。结果表明:活化后模板炭的无序度增加,电化学性能有显著的提高。在1 Ag-1的电流密度下,活化后的多孔炭比容量为45.0~69.2 Fg-1;在20 Ag-1充放电时,比电容保持率仍可达45%以上。说明活化后的多孔炭材料具有良好的电化学性能,是较好的双层电容器电极材料。

关键词 无机非金属材料多孔炭模板法KOH活化电化学性能    
Abstract

Diatomite-templated carbon was prepared with diatomite as template and furfuryl alcohol (FA) as carbon resource, which was further activated with potassium hydroxide as activating agent. The prepared carbon materials were characterized by means of X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and N2 adsorption. Simultaneously, the electrochemical properties of the porous carbon before and after activation were studied. The results show that the porous carbon after activation has higher degree of disorder in chemical structure and better electrochemical properties rather than the one before activation. The specific capacitance of the porous carbon was in the range from 45.0 to 69.2 Fg-1 by the current density of 1 Ag-1 and the capacitance retention remains more than 45% by the current density of 20 Ag-1. These results show that the porous carbon after activation has good electrochemical performance and it's an ideal material for electric double layer capacitor.

Key wordsinorganic nonmetallic materials    porous carbon    template method    KOH activation    electrochemical performance
收稿日期: 2016-06-30     
基金资助:国家自然科学基金(51274015)和中国博士后科学基金(2015M580915)
作者简介:

作者简介 李爱军,男,1992年生,博士

Samples SiO2 Al3O2 Fe2O3 K2O CaO MgO Na2O TiO2 L.O. I. a
DE 84.23 3.27 0.74 0.46 0.34 0.25 0.20 0.17 4.5
PE 91.99 2.01 0.23 0.35 0.13 0.07 0.17 0.10 2.5
表1  提纯前后硅藻土的化学成分
图1  硅藻土、模板炭和活化后的多孔炭的X射线衍射图
Samples FWHM(002) Lc/nm FWHM(100) La/nm d(002)/nm
C-700 11.77 0.723 7.32 3.046 0.393
C-800 13.88 0.614 8.20 2.740 0.388
C-900 10.91 0.783 7.09 3.177 0.384
AC-700 9.50 0.895 9.10 2.482 0.396
AC-800 15.73 0.499 5.81 2.796 0.391
AC-900 13.35 0.588 6.54 0.484 0.388
表2  利用X射线衍射得到的结构参数
图2  KOH活化前后炭材料的拉曼光谱图
Sample Position/cm-1 FWHM Intensity (area) ID1/IG
D1 G D1 G D1 G
C-700 1352.7 1601.3 154.2 52.8 179.4 63.8 2.81
C-800 1347.5 1594.2 153.7 93.4 624.1 253.4 2.46
C-900 1342.5 1598.2 148.1 73.3 381.0 179.8 2.12
AC-700 1345.6 1594.2 172.5 67.0 1074.9 362.4 2.97
AC-800 1344.6 1591.1 157.7 71.0 983.6 371.0 2.65
AC-900 1346.6 1592.1 154.2 77.8 51.4 21.4 2.40
表3  炭材料的拉曼光谱拟合参数
图3  硅藻土及活化前后炭材料的SEM照片
图4  活化前后模板炭的N2等温吸附曲线(a)和中孔孔径分布曲线(b)
Samples BET surface
area/m2g-1
Pore volume Average pore size /nm Specific capacitance
/Fg-1
IR drop /V R
Total/cm3g-1 Micro/cm3g-1
C-700 34.6 0.0156 9.75
C-800 249 0.190 0.101 8.0 34.9 0.0147 7.99
C-900 29.7 0.0252 7.00
AC-700 58.6 0.0086 2.39
AC-800 581 0.367 0.244 5.3 69.2 0.0044 3.24
AC-900 45.0 0.0084 3.75
表4  样品的比表面积和孔径结构信息及其比电容
图5  活化前后模板炭的循环伏安曲线
图6  电流密度为1和10 Ag-1炭材料的恒流充放电曲线和不同的电流密度下的比电容和电容保持率
[1] Sharma P, Bhatti T S.A review on electrochemical double-layer capacitors[J]. Energy Convers.Manage., 2010, 51: 2901
[2] Zhang L L, Zhao X S.Carbon-based materials as supercapacitor electrodes[J]. Chem. Soc. Rev., 2009, 38: 2520
[3] Zhong C, Deng Y D, Hu W B, et al.A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chem. Soc. Rev., 2015, 44: 7484
[4] Zhai Y P, Dou Y Q, Zhao D Y, et al.Carbon materials for chemical capacitive energy storage[J]. Adv. Mater., 2011, 23: 4828
[5] Frackowiak E.Carbon materials for supercapacitor application[J].Phys. Chem. Chem. Phys., 2007, 9: 1774
[6] Gu W T, Yushin G.Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene[J]. Wiley Int. Rev. Energy Environ., 2014, 3: 424
[7] Stoller M D, Park S J, Zhu Y W, et al.Graphene-based ultracapacitors[J]. Nano Lett., 2008, 8: 3498
[8] Futaba D N, Hata K, Yamada T, et al.Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J]. Nat.Mater., 2006, 5: 987
[9] Wang K X, Wang Y G, Wang Y R, et al.Mesoporous carbon nanofibers for supercapacitor application[J]. J. Phys. Chem., 2009, 113C: 1093
[10] Losic D, Mitchell J G, Voelcker N H.Diatomaceous lessons in nanotechnology and advanced materials[J]. Adv. Mater., 2009, 21: 2949
[11] Noll F, Sumper M, Hampp N.Nanostructure of diatom silica surfaces and of biomimetic analogues[J]. Nano Lett., 2002, 2: 91
[12] Losic D, Mitchell J G, Lal R, et al.Rapid fabrication of micro-and nanoscale patterns by replica molding from diatom biosilica[J]. Adv. Funct. Mater., 2007, 17: 2439
[13] Pérez-Cabero M, Puchol V, Beltrán D, et al.Thalassiosirapseudonana diatom as biotemplate to produce a macroporous ordered carbon-rich material[J]. Carbon, 2008, 46: 297
[14] Liu D, Yuan P, Tan D Y, et al.Effects of inherent/enhanced solid acidity and morphology of diatomite templates on the synthesis and porosity of hierarchically porous carbon[J]. Langmuir, 2010, 26: 18624
[15] Liu D, Yuan WW, Yuan P, et al.Physical activation of diatomite-templated carbons and its effect on the adsorption of methylene blue (MB)[J]. Appl. Surf. Sci., 2013, 282: 838
[16] Dobor J, Perényi K, Varga I, et al.A new carbon-diatomite earth composite adsorbent for removal of heavy metals from aqueous solutions and a novel application idea[J]. Microporous Mesoporous Mater., 2015, 217: 63
[17] Yu W B, Deng L L, Yuan P, et al.Surface silylation of natural mesoporous/macroporous diatomite for adsorption of benzene[J]. J. Colloid Interface Sci., 2015, 448: 545
[18] Wang J C, Kaskel S.KOH activation of carbon-based materials for energy storage[J]. J. Mater. Chem., 2012, 22(45): 23710
[19] Liu D, Yuan P, Tan D Y, et al.Facile preparation of hierarchically porous carbon using diatomite as both template and catalyst and methylene blue adsorption of carbon products[J]. J. Colloid Interface Sci., 2012, 388: 176
[20] Sonwane C G, Bhatia S K.Characterization of pore size distributions of mesoporous materials from adsorption isotherms[J]. J. Phys. Chem., 2000, 104B: 9099
[21] Biscoe J, Warren B E.An X-ray study of carbon black[J]. J. Appl. Phys., 1942, 13: 364
[22] Barata-Rodrigues P M, Mays T J, Moggridge G D. Structured carbon adsorbents from clay, zeolite and mesoporousaluminosilicate templates[J]. Carbon, 2003, 41: 2231
[23] Cuesta A, Dhamelincourt P, Laureyns J, et al.Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials[J]. J. Mater. Chem., 1998, 8: 2875
[24] Kyotani T, Nagai T, Inoue S, et al.Formation of new type of porous carbon by carbonization in zeolite Nanochannels[J]. Chem. Mater., 1997, 9: 609
[25] Tuinstra F, Koenig J L.Raman spectrum of graphite[J]. J. Chem. Phys., 1970, 53: 1126
[26] Wang Y, Alsmeyer D C, McCreery R L. Raman spectroscopy of carbon materials: structural basis of observed spectra[J]. Chem. Mater., 1990, 2: 557
[27] Wang S Q, Cheng H F, Jiang D, et al.Raman spectroscopy of coal component of late Permian coals from southern China[J]. Spectrochem. Acta Mol. Biomol. Spectrosc., 2014, 132A: 767
[28] Sonibare O O, Haeger T, Foley S F.Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy[J]. Energy, 2010, 35: 5347
[29] Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure Appl. Chem., 1985, 57: 603
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 刘东璇, 陈平, 曹新荣, 周雪, 刘莹. 碗状C@FeS2@NC复合材料的制备及其电化学性能[J]. 材料研究学报, 2023, 37(1): 1-9.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.