|
|
KOH活化硅藻土模板炭及其电化学性能研究 |
李爱军, 传秀云( ), 黄杜斌, 曹曦 |
北京大学地球与空间科学学院 造山带与地壳演化教育部重点实验室 北京 100871 |
|
KOH Activation of Diatomite-templated Carbon and Its Electrochemical Property in Supercapacitor |
Aijun LI, Xiuyun CHUAN( ), Dubin HUANG, Xi CAO |
Key Laboratory of Orogenis Belts and Crustal Evolution, School of Earth and Space Sciences, Peking University, Beijing 100871, China |
引用本文:
李爱军, 传秀云, 黄杜斌, 曹曦. KOH活化硅藻土模板炭及其电化学性能研究[J]. 材料研究学报, 2017, 31(5): 321-328.
Aijun LI,
Xiuyun CHUAN,
Dubin HUANG,
Xi CAO.
KOH Activation of Diatomite-templated Carbon and Its Electrochemical Property in Supercapacitor[J]. Chinese Journal of Materials Research, 2017, 31(5): 321-328.
[1] | Sharma P, Bhatti T S.A review on electrochemical double-layer capacitors[J]. Energy Convers.Manage., 2010, 51: 2901 | [2] | Zhang L L, Zhao X S.Carbon-based materials as supercapacitor electrodes[J]. Chem. Soc. Rev., 2009, 38: 2520 | [3] | Zhong C, Deng Y D, Hu W B, et al.A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chem. Soc. Rev., 2015, 44: 7484 | [4] | Zhai Y P, Dou Y Q, Zhao D Y, et al.Carbon materials for chemical capacitive energy storage[J]. Adv. Mater., 2011, 23: 4828 | [5] | Frackowiak E.Carbon materials for supercapacitor application[J].Phys. Chem. Chem. Phys., 2007, 9: 1774 | [6] | Gu W T, Yushin G.Review of nanostructured carbon materials for electrochemical capacitor applications: advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene[J]. Wiley Int. Rev. Energy Environ., 2014, 3: 424 | [7] | Stoller M D, Park S J, Zhu Y W, et al.Graphene-based ultracapacitors[J]. Nano Lett., 2008, 8: 3498 | [8] | Futaba D N, Hata K, Yamada T, et al.Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes[J]. Nat.Mater., 2006, 5: 987 | [9] | Wang K X, Wang Y G, Wang Y R, et al.Mesoporous carbon nanofibers for supercapacitor application[J]. J. Phys. Chem., 2009, 113C: 1093 | [10] | Losic D, Mitchell J G, Voelcker N H.Diatomaceous lessons in nanotechnology and advanced materials[J]. Adv. Mater., 2009, 21: 2949 | [11] | Noll F, Sumper M, Hampp N.Nanostructure of diatom silica surfaces and of biomimetic analogues[J]. Nano Lett., 2002, 2: 91 | [12] | Losic D, Mitchell J G, Lal R, et al.Rapid fabrication of micro-and nanoscale patterns by replica molding from diatom biosilica[J]. Adv. Funct. Mater., 2007, 17: 2439 | [13] | Pérez-Cabero M, Puchol V, Beltrán D, et al.Thalassiosirapseudonana diatom as biotemplate to produce a macroporous ordered carbon-rich material[J]. Carbon, 2008, 46: 297 | [14] | Liu D, Yuan P, Tan D Y, et al.Effects of inherent/enhanced solid acidity and morphology of diatomite templates on the synthesis and porosity of hierarchically porous carbon[J]. Langmuir, 2010, 26: 18624 | [15] | Liu D, Yuan WW, Yuan P, et al.Physical activation of diatomite-templated carbons and its effect on the adsorption of methylene blue (MB)[J]. Appl. Surf. Sci., 2013, 282: 838 | [16] | Dobor J, Perényi K, Varga I, et al.A new carbon-diatomite earth composite adsorbent for removal of heavy metals from aqueous solutions and a novel application idea[J]. Microporous Mesoporous Mater., 2015, 217: 63 | [17] | Yu W B, Deng L L, Yuan P, et al.Surface silylation of natural mesoporous/macroporous diatomite for adsorption of benzene[J]. J. Colloid Interface Sci., 2015, 448: 545 | [18] | Wang J C, Kaskel S.KOH activation of carbon-based materials for energy storage[J]. J. Mater. Chem., 2012, 22(45): 23710 | [19] | Liu D, Yuan P, Tan D Y, et al.Facile preparation of hierarchically porous carbon using diatomite as both template and catalyst and methylene blue adsorption of carbon products[J]. J. Colloid Interface Sci., 2012, 388: 176 | [20] | Sonwane C G, Bhatia S K.Characterization of pore size distributions of mesoporous materials from adsorption isotherms[J]. J. Phys. Chem., 2000, 104B: 9099 | [21] | Biscoe J, Warren B E.An X-ray study of carbon black[J]. J. Appl. Phys., 1942, 13: 364 | [22] | Barata-Rodrigues P M, Mays T J, Moggridge G D. Structured carbon adsorbents from clay, zeolite and mesoporousaluminosilicate templates[J]. Carbon, 2003, 41: 2231 | [23] | Cuesta A, Dhamelincourt P, Laureyns J, et al.Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials[J]. J. Mater. Chem., 1998, 8: 2875 | [24] | Kyotani T, Nagai T, Inoue S, et al.Formation of new type of porous carbon by carbonization in zeolite Nanochannels[J]. Chem. Mater., 1997, 9: 609 | [25] | Tuinstra F, Koenig J L.Raman spectrum of graphite[J]. J. Chem. Phys., 1970, 53: 1126 | [26] | Wang Y, Alsmeyer D C, McCreery R L. Raman spectroscopy of carbon materials: structural basis of observed spectra[J]. Chem. Mater., 1990, 2: 557 | [27] | Wang S Q, Cheng H F, Jiang D, et al.Raman spectroscopy of coal component of late Permian coals from southern China[J]. Spectrochem. Acta Mol. Biomol. Spectrosc., 2014, 132A: 767 | [28] | Sonibare O O, Haeger T, Foley S F.Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy[J]. Energy, 2010, 35: 5347 | [29] | Sing K S W, Everett D H, Haul R A W, et al. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[J]. Pure Appl. Chem., 1985, 57: 603 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|