Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (4): 279-284    DOI: 10.11901/1005.3093.2016.225
  研究论文 本期目录 | 过刊浏览 |
Ca/Ti摩尔比对CaTiO3枝晶结构和光催化性能的影响
董伟霞1,2(), 赵高凌2, 包启富1, 顾幸勇1
1 景德镇陶瓷大学材料科学与工程学院 景德镇 333001
2 硅材料国家重点实验室 浙江大学材料科学与工程系 杭州 310027
Effect of Ca/Ti Molar Ratio on Structure and Photocatalytic Properties of CaTiO3 with Dendrite Structure
Weixia DONG1,2(), Gaoling ZHAO2, Qifu BAO1, Xingyong GU1
1 Department of Materials Science and Engineering, Jingdezhen Ceramic Institute,Jingdezhen 333001, China
2 State Key Lab of Silicon Material & Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
引用本文:

董伟霞, 赵高凌, 包启富, 顾幸勇. Ca/Ti摩尔比对CaTiO3枝晶结构和光催化性能的影响[J]. 材料研究学报, 2017, 31(4): 279-284.
Weixia DONG, Gaoling ZHAO, Qifu BAO, Xingyong GU. Effect of Ca/Ti Molar Ratio on Structure and Photocatalytic Properties of CaTiO3 with Dendrite Structure[J]. Chinese Journal of Materials Research, 2017, 31(4): 279-284.

全文: PDF(3357 KB)   HTML
摘要: 

控制Ca/Ti摩尔比,用溶剂热法制备了CaTiO3枝晶结构。使用XRD、SEM和FT-IR图谱等手段表征枝晶的结构,并用紫外-可见吸收光谱测试了样品的光学性能和光催化性能。结果表明:Ca/Ti摩尔比对样品的形貌有很大的影响。随着Ca/Ti摩尔比的增加,CaTiO3晶体的形貌发生从片状依次变化为聚集长柱体和枝晶结构。这种形貌的演变是“定位自组装并伴随奥斯瓦德熟化”向“溶解”扩散机制的转化所致。当钛过量时(Ca/Ti摩尔比为1/2~1/1.5),样品由片状和不规则聚集长柱体组成;随着钛含量的减少,片状结构向聚集不规则的长柱体过渡;当钙钛摩尔比为1/1~1.2/1时,样品呈现出枝晶结构。随着钙/钛摩尔比的增加,枝晶的发育越来越明显。但是当钙过量时(Ca/Ti摩尔比为1.25/1~2/1)溶液中大量过剩的Ca2+为Ca3Ti2O7和CaCO3相的生成提供了条件,使样品的枝晶结构发育更完善。当钙/钛摩尔比为1.2/1时,纯CaTiO3枝晶呈现出最大的降解率0.0187 min-1。这种枝晶结构呈现微纳结构,因此便于存储和回收。

关键词 无机非金属材料CaTiO3枝晶结构Ca/Ti摩尔比溶剂热法光催化性能    
Abstract

Calcium titanite CaTiO3 with dendrite structure were prepared by solvothermal method while adjusting the molar ratio of Ca/Ti. The microstructure and optical performance of the prepared CaTiO3 were characterized by means of X-ray diffractometer (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared (FT-IR) spectrometer and UV-visible (UV-vis) spectrophotometer. The results show that Ca/Ti molar ratio has an important effect on the morphologies and phases of the prepared CaTiO3. The morphology of the obtained CaTiO3 changed from nano-sheets to aggregated prisms and then to butterfly-like dendrite structure with the increasing Ca/Ti molar ratio. The mechanism for the CaTiO3 morphology changes was atributed to the transformation from the oriented self-assembly accompanied by Ostwald ripening to the diffusion-controlled process of “dissolution”. When Ca/Ti molar ratio is 1/2-1/1.5, the prepared CaTiO3 is composed of nanosheets and aggregated irregular prisms. With the increase of Ca/Ti molar ratio, nanosheets transforms to irregular prisms. When Ca/Ti molar ratio is 1/1-1.2/1, the prepared CaTiO3 exhibited mainly dendritic morphology, which was gradually developed with the increasing Ca/Ti molar ratio. When the Ca/Ti molar ratio rises to 1.25/1 and 2/1, the phases of Ca3Ti2O7 and CaCO3 appear due to the excess amount of Ca2+ ions in the solutions. When Ca/Ti molar ratio is 1.2/1, pure CaTiO3 with dendrite structure, as a micrometer-scale structured material, showed the optimum value of 0.0187 min-1 for the photocatalytic degradation, which is much convenient for storage and handling.

Key wordsinorganic non-metallic materials    CaTiO3 dendrites    Ca/Ti molar ratio    solvothermal method    photocatalytic properties
收稿日期: 2016-04-25     
ZTFLH:  TB321  
基金资助:国家自然科学基金(51502119),江西省重大自然科学基金(20152ACB21022),江西省科级合作领域重点项目(20161BBH80048),江西省教育厅项目(GJJ14629),景德镇市科技局项目(701301-352)
作者简介:

作者简介 董伟霞,女,1977年生,副教授

图1  不同钙钛比样品的XRD图谱
图2  不同钙钛摩尔比样品的FESEM照片
图3  CaTiO3样品的低倍FESEM 图、单个蝴蝶状枝晶的TEM 图和单个蝴蝶状枝晶圆圈所示的HRTEM图和 SAED图谱(插图)
Ca/Ti molar ratio Crystal structure Morphology SBET/(m2g–1)
1:2 CaTiO3, CaTi2O5, Ti7O13 nanoflake, irregular aggregated prisms 6.86
1:1.5 CaTiO3, CaTi2O5, Ti7O13 aggregated prisms (prevailer) 6.82
1:1 CaTiO3 aggregated prisms (prevailer); irregular dendrites 6.89
1.1:1 CaTiO3 irregular dendrites (prevailer) 6.91
1.2:1 CaTiO3 dendrites 6.92
1.25:1 CaTiO3 ,CaCO3 dendrites 6.94
1.5:1 CaTiO3,CaCO3,Ca(OH)2 dendrites 6.95
1.75:1 CaTiO3,CaCO3,Ca(OH)2 dendrites 7.01
2:1 CaTiO3,CaCO3,Ca(OH)2 dendrites 7.02
表1  不同Ca/Ti比样品的晶体结构、形貌和比表面积
图4  不同Ca/Ti摩尔比样品的FT-IR谱图
图5  不同钙钛比样品的光催化性能
图6  不同钙钛比样品的光催化性能
[1] Wang Y, He Y, Lai Q, et al.Review of the progress in preparing nano TiO2: An important environmental engineering material[J]. Journal of Environmental Sciences, 2014, 26(11): 2139
[2] Gao L, Zheng S, Zhang Q H.Nano Titanium Oxide Photocatalytic Materials and Its Application [M]. Beijing: Chemical Industry Press, 2002(高濂, 郑珊, 张青红. 纳米氧化钛光催化材料及其应用[M]. 北京: 化学工业出版社, 2002)
[3] Modeshia D R, Walton R L.Solvothermal synthesis of perovskites and pyrochlores: crystallization of functional oxides under mild conditions[J]. Chem. Soc. Rev., 2010, 39, 4305
[4] Sayad N, Saadi A, Nemouchi S, et al.Hydrogenation/hydrogenolysis of benzaldehyde over CaTiO3 based catalysts[J]. Stud. Sur. Sci. Catal., 2010, 175, 377
[5] Zhao H, Duan Y, Sun X.Synthesis and characterization of CaTiO3 particles with controlled shape and size[J]. New J. Chem., 2013, 37, 986
[6] Dong W X, Song B, Meng W J, et al.A simple solvothermal process to synthesize CaTiO3 microspheres and its photocatalytic properties[J]. Appl. Phys. A-mater., 2015, 349, 272
[7] Zhong W Z, Liu G Z, Shi E W.Crystal growth under hydrothermal conditions and its formation[J]. Science China (B), 1994, 24, 394(仲维卓, 刘光照, 施而畏, 在热液条件下晶体的生长基元与晶体形成机理[J]. 中国科学(B辑), 1994, 24, 394)
[8] Shi E W, Zhong W Z, Hua X K.Growth model of the anion coordination polyhedron[J]. Science China (E), 1998, 28(1): 37(施而畏, 仲维卓, 华素坤. 关于负离子配位多面体生长基元模型[J]. 中国科学(E辑), 1998, 28(1): 37)
[9] Huang Y J, Tsai M C, Chiu H T, et al.Artificial synthesis of platelet-like kassite and its transformation to CaTiO3[J]. Cryst. Growth Des., 2010, 10, 1221
[10] Dong W X, Zhao G L, Song B, et al.Surfactant-free fabrication of CaTiO3 butterfly-like dendrite via a simple one-step hydrothermal route[J]. Cryst. Eng. Comm., 2012, 14, 6990
[11] Duffy G M, Pillai S C, McCormack D E. The effect of the rate of precursor production on the purity and aggregation morphology of nanoparticulate zinc oxide[J]. J. Mater. Chem., 2007, 17, 181
[12] Musi? S,Goti? M, Ivanda M, et al.Chemical and micro structural properties of TiO2 synthesized by sol-gel procedure[J]. Mater. Sci. Eng. B, 1997, 47, 33
[13] Nakamoto K.Infrared and raman spectra of inorganic and coordination compounds[M]. Toronto: A Wiley-Interscience Publication, 1997
[14] Hashim M, Hu C G, Wang X, et al.Synthesis and photocatalytic property of lead molybdate dendrites with exposed (001) facet[J]. Appl. Surf. Sci., 2012, 285(15), 5858
[15] Tang J, Zou Z, Ye J.Efficient photocatalytic decomposition of organic contaminants over CaBi2O4 under visible-light irradiation[J]. Angew. Chem. Int. Ed., 2004, 43, 4463
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.