Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (2): 110-116    DOI: 10.11901/1005.3093.2016.182
  本期目录 | 过刊浏览 |
纳米改性WBP-CFA地聚合物的耐久性和孔结构
郭晓潞1,2(),施惠生1,2
1 先进土木工程材料教育部重点实验室 同济大学 上海 201804
2 同济大学材料科学与工程学院 上海 201804
Durability and Pore Structure of Nano-particle-modified Geopolymers of Waste Brick Powder-class C Fly Ash
Xiaolu GUO1,2(),Huisheng SHI1,2
1 Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, Tongji University, Shanghai 201804, China
2 School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
引用本文:

郭晓潞,施惠生. 纳米改性WBP-CFA地聚合物的耐久性和孔结构[J]. 材料研究学报, 2017, 31(2): 110-116.
Xiaolu GUO, Huisheng SHI. Durability and Pore Structure of Nano-particle-modified Geopolymers of Waste Brick Powder-class C Fly Ash[J]. Chinese Journal of Materials Research, 2017, 31(2): 110-116.

全文: PDF(1894 KB)   HTML
摘要: 

使用废弃粘土砖粉(WBP)和高钙粉煤灰(CFA)制备复合地聚合物,用纳米颗粒对其进行改性,研究了纳米改性WBP-CFA地聚合物的抗冻性和抗渗性及其与孔结构之间的内在关联。结果表明,单掺纳米SiO2的改性效果优于纳米Al2O3,复掺2%(质量分数,下同) 纳米SiO2和1% 纳米Al2O3的地聚合物试样的抗渗性和抗冻性优良。冻融使地聚合物的体积密度降低,显气孔率和真气孔率提高;平均孔径和最可几孔径均增大,孔隙率提高;小于50 nm的无害孔和少害孔减少,大于50 nm的有害孔和多害孔均增加。

关键词 无机非金属材料废弃砖粉粉煤灰地聚合物纳米改性抗渗性抗冻性孔结构    
Abstract

Nano particle modified composite geopolymers were prepared with waste brick powder (WBP) and class C fly ash (CFA) as raw material, and nano-particales SiO2 and Al2O3 as modifier. Then their anti-permeability and anti-freezing-thawing as well as their pore structure were investigated. Results show that nano-SiO2 is superior to nano-Al2O3 for enhancing the performance of geopolymers, and the combination of 2%(mass fraction) nano-SiO2 and 1% nano-Al2O3 exhibits the best modification effect, so that the geopolymer possesses the highest anti-permeability and anti-freezing-thawing. It is found for the geopolymers after being freezing-thawing tested that the apparent porosity, true porosity, average pore size, the size of the most probable pores and the total porosity all enhanced, however the volume density decreased. Besides, the harmless and less-harmful holes with size smaller than 50 nm decreased, and in the contrast,the harmful and more-harmful holes increased.

Key wordsinorganic non-metallic materials    waste brick powder    fly ash    geopolymer    nano-modification    resistance to permeability    resistance to freezing-thawing    pore structure
收稿日期: 2016-04-07     
基金资助:国家自然科学基金(51478328), 中央高校基本科研业务费专项资金(0500219225)
图1  原材料的XRD图谱
Content Na2O MgO Al2O3 SiO2 K2O CaO Fe2O3 Others
Class C fly ash (CFA) 1.28 1.85 22.00 50.30 3.42 11.30 7.10 2.74
Waste brick powder (WBP) 1.34 3.36 10.3 42.8 2.11 26.3 6.91 6.88
表1  实验用原材料的化学组成
Type Particle size
/nm
Specific surface area
/m2g-1
Density
/gcm-3
Hydrophily
/ Hydrophobicity
Color
SiO2 30±5 400 0.4 Hydrophily White
Al2O3(α) 30±5 100 1.7 Hydrophily White
表2  纳米SiO2与纳米Al2O3的基本物理性质
Samples CFA
/g
WBP
/g
Sand
/g
Composite activator
/g
Water
/g
Nano-particle
Nano-SiO2
/g
Nano-Al2O3
/g
SCFA 600.00 - 1620.00 323.45 71.09 - -
SWBP 420.00 180.00 1620.00 323.45 71.09 - -
SW 0-3 420.00 180.00 1620.00 323.45 71.09 - 18.00
SW 1-2 420.00 180.00 1620.00 323.45 71.09 6.00 12.00
SW 2-1 420.00 180.00 1620.00 323.45 71.09 12.00 6.00
SW 3-0 420.00 180.00 1620.00 323.45 71.09 18.00 -
表3  纳米改性废弃砖粉复合地聚合物砂浆的配合比
Samples Fluidity / mm Strength / MPa
3 d 28 d
Flexural Compressive Flexural Compressive
SCFA 198 3.1 13.8 5.0 40.5
SWBP 195 3.2 15.9 5.3 42.5
SW 0-3 166 3.6 18.7 6.4 48.8
SW 1-2 185 3.8 18.2 6.7 50.9
SW 2-1 193 4.2 20.5 7.5 53.7
SW 3-0 157 3.8 20.1 7.1 51.5
表4  地聚合物的流动度和强度
Samples 7d impermeability pressure /MPa 28d penetration height/mm 28d water absorption ratio /%
SCFA 1.5 13.1 7.5
SWBP 1.7 11.8 6.1
SW 0-3 1.9 10.3 5.8
SW 1-2 2.0 10.5 5.4
SW 2-1 2.1 9.8 5.1
SW 3-0 2.0 10.7 5.5
表5  地聚合物的抗渗性能与吸水率
图2  地聚合物经冻融循环后的质量损失率
图3  地聚合物经冻融循环后的强度损失率
Samples Bulk density /gcm-3 Apparent porosity /% Ture porosity /%
Before freezing- thawing After freezing-thawing Before freezing- thawing After freezing-thawing Before freezing- thawing After freezing-thawing
SCFA 1.63 1.51 27.66 36.09 41.45 47.16
SWBP 1.69 1.57 25.49 32.89 38.64 43.94
SW 0-3 1.71 1.60 22.85 30.19 37.06 41.80
SW 1-2 1.73 1.62 22.53 29.32 35.30 40.47
SW 2-1 1.78 1.71 20.39 26.27 33.21 37.16
SW 3-0 1.75 1.66 21.51 28.79 34.12 39.74
表6  不同试样的体积密度、显气孔率和真气孔率
Samples Porosity/% Mean pore size /nm The most probable aperture/nm Distribution of pore size /%
<20 nm 20~50 nm 50~200 nm >200 nm
SWBP 25.2 101.1 90.9 10.4 25.7 38.6 25.3
DWBP 31.3 135.4 107.1 3.9 16.5 39.5 40.1
表7  冻融前后试样的孔结构参数
图4  冻融循环对地聚合物孔径分布曲线的影响
[1] Rao F, Liu Q.Geopolymerization and its potential application in mine tailings consolidation: a review[J]. Miner. Process. Extr. Metall. Rev., 2015, 36: 399
[2] Tchadjié L N, Djobo J N Y, Ranjbar N, et al. Potential of using granite waste as raw material for geopolymer synthesis[J]. Ceram. Int., 2016, 42: 3046
[3] Hou Y F.Fly Ash-Based Geopolymer[M]. Beijing: Chemistry Industry Press, 2014
[3] (侯云芬. 粉煤灰基地质聚合物[M]. 北京: 化学工业出版社, 2014)
[4] Zhang Y R, Kong X M.Influences of PCE superplasticizer on the pore structure and the impermeability of hardened cementitious materials[J]. J. Adv. Concr. Technol., 2014, 12: 443
[5] Kameche Z A, Ghomari F, Choinska M, et al.Assessment of liquid water and gas permeabilities of partially saturated ordinary concrete[J]. Constr. Build. Mater., 2014, 65: 551
[6] Auroy M, Poyet S, Le Bescop P, et al.Impact of carbonation on unsaturated water transport properties of cement-based materials[J]. Cement Concrete Res., 2015, 74: 44
[7] Ma Y, Hu J, Ye G.The pore structure and permeability of alkali activated fly ash[J]. Fuel, 2013, 104: 771
[8] Olivia M, Nikraz H R.Strength and water penetrability of fly ash geopolymer concrete[J]. ARPN J. Eng. Appl. Sci., 2011, 6: 70
[9] Nasvia M C M, Ranjitha P G, Sanjayan J. The permeability of geopolymer at down-hole stress conditions: Application for carbon dioxide sequestration wells[J]. Appl. Energy, 2013, 102: 1391
[10] Ye Q.Research and development of nano-cement composite[J]. New. Build. Mater., 2001, (11): 4
[10] (叶青. 纳米复合水泥结构材料的研究与开发[J]. 新型建筑材料, 2001, (11): 4)
[11] Chen R S, Ye Q.Research on the comparison of properties of hardened cement paste between nano-SiO2 and silica fume added[J]. Concrete, 2002, (1): 7
[11] (陈荣升, 叶青. 掺纳米SiO2与掺硅粉的水泥硬化浆体的性能比较[J]. 混凝土, 2002, (1): 7)
[12] Ye Q, Zhang Z N, Chen R S, et al.Interaction of nano-SiO2 with portlandite at interface between hardened cement paste and aggregate[J]. J. Chin. Ceram. Soc., 2003, 31: 517
[12] (叶青, 张泽南, 陈荣升等. 纳米SiO2与水泥硬化浆体中Ca(OH)2的反应[J]. 硅酸盐学报, 2003, 31: 517)
[13] Zhu K Z, Li Y W, Zhu H Y, et al.Research development on the nano-modification cement[J]. Cement Guide for New Epoch, 2011, (3): 6
[13] (朱孔赞, 李因文, 朱化雨等. 纳米改性水泥的研究进展[J]. 新世纪水泥导报, 2011, (3): 6)
[14] Shi H S, Guo X L.Civil Engineering Materials[M]. 2nd ed. Chongqing: Chongqing University Press, 2013
[14] (施惠生, 郭晓潞. 土木工程材料[M]. 第二版. 重庆: 重庆大学出版社, 2013)
[15] Dunaszegi L.HPC for durability of the confederation bridge[A]. HPC Bridge Views[C]. Skokie, IL: National Concrete Bridge Council, 1999
[16] Top?u I B, Toprak M U, Uyguno?lu T.Durability and microstructure characteristics of alkali activated coal bottom ash geopolymer cement[J]. J. Clean. Prod., 2014, 81: 211
[17] Wu Z W, Lian H Z.High Performance Concrete[M]. Beijing: China Railway Publishing House, 1999
[17] (吴中伟, 廉慧珍. 高性能混凝土[M]. 北京: 中国铁道出版社, 1999)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 李海龙, 牟娟, 王媛媛, 葛绍璠, 刘春明, 张海峰, 朱正旺. MnNiCoCrFe多孔高熵合金的电催化析氧性能[J]. 材料研究学报, 2023, 37(5): 332-340.
[7] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[8] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.