Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (1): 65-73    DOI: 10.11901/1005.3093.2016.118
  本期目录 | 过刊浏览 |
淬火冷却速率对60Si2CrVAT弹簧钢高周疲劳性能的影响
雷磊1,2,4,梁益龙1,2,4(),姜云1,2,3,徐军1,2,4,杨明1,2,4
1 贵州大学材料与冶金学院 贵阳 550025
2 贵州省材料结构与强度重点实验室 贵阳 550025
3 贵州大学机械工程学院 贵阳 550025
4 高性能金属结构材料与制造技术国家地方联合工程实验室 贵阳 550025
Effect of Quench Rate on the High Cycle Fatigue Property of 60Si2CrVAT Spring Steels
Lei LEI1,2,4,Yilong LIANG1,2,4(),Yun JIANG1,2,3,Jun XU1,2,4,Ming YANG1,2,4
1 College of Materials and Metallurgy,University of Guizhou,Guiyang 550025,China
2 Key Laboratory for Material Structure and Strength of Guizhou Province,Guiyang 550025,China
3 College of Mechanical Engineering,University of Guizhou,Guiyang 550025,China
4 National Local Co-construction Engineering Laboratory for High Performance Metal Structure Material and Manufacture Technology,Guiyang 550025,China
引用本文:

雷磊,梁益龙,姜云,徐军,杨明. 淬火冷却速率对60Si2CrVAT弹簧钢高周疲劳性能的影响[J]. 材料研究学报, 2017, 31(1): 65-73.
Lei LEI, Yilong LIANG, Yun JIANG, Jun XU, Ming YANG. Effect of Quench Rate on the High Cycle Fatigue Property of 60Si2CrVAT Spring Steels[J]. Chinese Journal of Materials Research, 2017, 31(1): 65-73.

全文: PDF(6588 KB)   HTML
摘要: 

采用13%PAG(聚烷撑乙二醇)和油对60Si2CrVAT弹簧钢进行淬火热处理,研究了不同淬火冷却速率对其轴向高周疲劳(r=-1)性能的影响。利用SEM、TEM和EBSD等方法对疲劳断口形貌、源区成分、显微组织进行表征。结果表明,13%PAG淬火后的疲劳极限(781.5 MPa)比油淬高67.5 MPa(714.0 MPa)。疲劳断口分析表明,疲劳破坏大部分起源于试样内部夹杂物和碳化物,形成“鱼眼”型撕裂的粒状亮区(GBF)。随裂纹源夹杂物处应力强度因子幅?Kinc的减小,疲劳寿命Nf增加,而GBF区边界的应力场强度因子幅?KGBF并不随Nf变化而改变,且13%PAG淬火试样的?KGBF大于油淬试样。实验钢13%PAG淬火试样组织中分布更多的纳米孪晶; 马氏体板条块和板条更加细化,碳化物呈均匀细小弥散分布; 而油淬碳化物较粗大,沿马氏体板条界和原奥氏体晶界分布。这些因素是PAG淬火后疲劳性能优于油淬的主要原因。

关键词 金属材料60Si2CrVAT弹簧钢冷却速率高周疲劳夹杂物微观组织    
Abstract

The effect of quench with two quenching media of 13% polyaleneglycol (PAG) and oil respectively on the high cycle fatigue behavior of spring steel 60Si2CrVAT was studied by applying alternatively uniaxial tension and compression. While the fatigue fractograph,source composition,microstructural evolution of the steel were examined by means of SEM,TEM and EBSD. The results indicate that the fatigue limit for the steel quenched with 13%PAG is 781.5 MPa; however that with oil is 714.0 MPa. Analysis results of fractograph show that fatigue damages mostly originate from the internal inclusions and carbides,while granular bright facets (GBF) are observed in the vicinity around the inclusions. Further investigation indicates that the stress intensity factor range at crack initiation site of inclusion ?Kinc trends to decrease gradually with increasing the fatigue life Nf,while the stress factor range at GBF boundary ?KGBF keeps almost constant with varying Nf and the ?KGBF for the steel quenched with oil is smaller than that with 13% PAG. From microstructural observation results,it suggests that the beneficial effect on the fatigue property of the steel quenched with 13%PAG is caused by that there existed much more nano-twins,much finer individual lath and block,as well as finer carbides uniformly distributed in martensitic matrix for the steel quenched with 13% PAG rather than those with oil.

Key wordsmetallic materials    60Si2CrVAT spring steels    quench rate    high cycle fatigue    inclusion    microstructure
收稿日期: 2016-03-07     
基金资助:国家自然科学基金(51461006)、贵阳市科技支撑计划项目筑科合同(2013101)、贵州省科技重大专项(20146012)和贵州省重大专项黔科合(JZ[2014]2003)
C Si Cr Mn V Cu P S Fe
0.59 1.61 1.15 0.66 0.16 0.014 0.009 0.015 Bal.
表1  实验用钢化学成分(质量分数, %)
图1  疲劳试样形状与尺寸
图2  不同淬火介质的冷却性能曲线
图3  两种介质淬火回火后拉伸应力应变曲线
图4  60Si2CrVAT弹簧钢的疲劳极限图和S-N曲线图
Qunchant Rp0.2/MPa Rm/MPa A/% Z/% HRC
13%PAG 1738.90 1909.42 8.52 20.87 52.30
Oil 1643.57 1842.44 6.60 16.88 46.50
表2  两种淬火介质试验后的力学性能
图5  13%PAG试样疲劳断口SEM图
图6  油淬试样疲劳断口SEM图
图7  实验钢疲劳断口疲劳源夹杂物处的应力强度因子幅△Kinc和GBF处的应力强度因子幅?KGBF与疲劳寿命Nf之间的关系
图8  实验钢EBSD图
图9  实验钢的TEM像
图10  实验钢中的碳化物TEM图
图11  疲劳条带
[1] Fu S H, Hui W J, Liu Z H, et al.Fatigue fracture behaviour of a medium-carbon 2000 MPa level high strength spring steel[J]. J. Iron Steel Res., 2006, 18: 30
[1] (付书红, 惠卫军, 刘中华等. 一种2000 MPa级中碳高强度弹簧钢的疲劳破坏行为[J]. 钢铁研究学报, 2006, 18: 30)
[2] Zhao H M, Hui W J, Nie Y H, et al.Very high cycle fatigue fracture behavior of high strength spring steel 60Si2CrVA[J]. Chin. J. Mater. Res., 2008, 22: 526
[2] (赵海民, 惠卫军, 聂义宏等. 60Si2CrVA高强度弹簧钢的超高周疲劳破坏行为[J]. 材料研究学报, 2008, 22: 526)
[3] Wang K, Yin J, Gu W J, et al.Effect of heat treatment on structure and mechanical properties of spring steel 60Si2CrVAT[J]. Spec. Steel, 2007, 28: 56
[3] (王凯, 殷匠, 顾文俊等. 热处理对60Si2CrVAT弹簧钢组织和力学性能的影响[J]. 特殊钢, 2007, 28: 56)
[4] Li Q Z, Gao G H, Zhou L X, et al.A test for optimization of heat treatment process of high strength spring steel 60Si2CrVAT[J]. Spec. Steel, 2012, 33: 49
[4] (李秋志, 高国华, 周立新等. 高强度弹簧钢60Si2CrVAT热处理工艺优化试验[J]. 特殊钢, 2012, 33: 49)
[5] Wu H L, Wang F M, Li C R, et al.Optimization of heat treatment process of 60Si2CrVAT spring steel for high-speed trains[J]. Trans. Mater. Heat Treat., 2011, 32: 35
[5] (吴华林, 王福明, 李长荣等. 提速列车用弹簧钢60Si2CrVAT的热处理工艺优化[J]. 材料热处理学报, 2011, 32: 35)
[6] Li X Q, Zhang Y X, Guo J P.Study on the quenching of spring steels used polyglycol solution[J]. Heat Treat. Metals, 1992, (11): 3
[6] (黎秀球, 张亚信, 郭建平. 新型淬火介质在弹簧钢热处理中的应用研究[J]. 金属热处理, 1992, (11): 3)
[7] Meng X Y, Qin L F.Application of PAG in heat treatment for 50CrVA leaf spring[J]. Hot Work. Technol., 2012, 41: 187
[7] (孟宪芸, 秦立富. PAG在50CrVA钢板弹簧热处理中的应用[J]. 热加工工艺, 2012, 41: 187)
[8] Ma M T.The effect of PAG on the property of spring steel[J]. Autom. Technol. Mater., 1995, (2): 13
[8] (马鸣图. PAG类淬火介质对弹簧钢性能的影响[J]. 汽车工艺与材料, 1995, (2): 13)
[9] Fan J L, Guo X L, Wu C W, et al.Effect of heat treatments on fatigue properties of FV520B steel using infrared thermography[J]. Chin. J. Mater. Res., 2012, 26: 61
[9] (樊俊铃, 郭杏林, 吴承伟等. 热处理对FV520B钢疲劳性能的影响[J]. 材料研究学报, 2012, 26: 61)
[10] Murakami Y, Nomoto T, Ueda T, et al.On the mechanism of fatigue failure in the super-long life regime (N > 107 cycles). Part 1: influence of hydrogen trapped by inclusions[J]. Fatigue Fract. Eng. Mater. Struct., 2000, 23: 893
[11] Tanaka K, Akiniwa Y.Fatigue crack propagation behaviour derived from S-N data in very high cycle regime[J]. Fatigue Fract. Eng. Mater. Struct., 2002, 25: 775
[12] Lu L T, Shiozawa K, Morii Y, et al.Fatigue fracture process of a high-carbon-chromium bearing steel in ultra-long life regime[J]. Acta. Metall. Sin., 2005, 41: 1066
[12] (鲁连涛, 盐泽和章, 森井佑一等. 高碳铬轴承钢超长寿命疲劳破坏过程的研究[J]. 金属学报, 2005, 41: 1066)
[13] Murakami Y, Kodama S, Konuma S.Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions[J]. Int. J. Fatigue, 1989, 11: 291
[14] Sakai T, Sato Y, Oguma N.Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue[J]. Fatigue Fract. Eng. Mater. Struct., 2002, 25: 765
[15] Zhang J M, Yang Z G, Li S X, et al.Ultra high cycle fatigue behavior of automotive high strength spring steels 54SiV6 and 54SiCr6[J]. Acta. Metall. Sin., 2006, 42: 259
[15] (张继明, 杨振国, 李守新等. 汽车用高强度弹簧钢54SiCrV6和54SiCr6的超高周疲劳行为[J]. 金属学报, 2006, 42: 259)
[16] Nie Y H, Hui W J, Fu W T, et al.Ultra high cycle fatigue behavior of a medium-carbon high strength spring steel NHS1[J]. Acta. Metall. Sin., 2007, 43: 1031
[16] (聂义宏, 惠卫军, 傅万堂等. 中碳强度弹簧钢NHS1超高周疲劳破坏行为[J]. 金属学报, 2007, 43: 1031)
[17] Zhang Y J, Hui W J, Xiang J Z, et al.Effect of grain size on ultra-high-cycle fatigue properties of 42CrMoVNb steel[J]. Acta. Metall. Sin., 2009, 45: 880
[17] (张永健, 惠卫军, 项金钟等. 晶粒尺寸对42CrMoVNb钢超高周疲劳性能的影响[J]. 金属学报, 2009, 45: 880)
[18] Hong Y S, Fang B.Microscopic process and description for the initiation and propagation of short fatigue cracks[J]. Adv. Mech., 1993, 23: 468
[18] (洪友士, 方飚. 疲劳短裂纹萌生及发展的细观过程和理论[J]. 力学进展, 1993, 23: 468)
[19] Wang X S, Liang F, Zeng Y P, et al.SEM in situ observations to the effects of inclusions on initiation and propagation of the low cyclic fatigue crack in super strength steel[J]. Acta. Metall. Sin., 2005, 41: 1272
[19] (王习术, 梁锋, 曾燕屏等. 夹杂物对超高强度钢低周疲劳裂纹萌生及扩展影响的原位观测[J]. 金属学报, 2005, 41: 1272)
[20] Stormvinter A, Hedstr?m P, Borgenstam A.A transmission electron microscopy study of plate martensite formation in high-carbon low alloy steels[J]. J. Mater. Sci. Technol., 2013, 29: 373
[21] Tomita Y, Okabayashi K.Effect of quench rate on microstructure and tensile properties of ALSL 4320 and 4340 steels[J]. Metall. Trans. A, 1987, 18: 115
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.