|
|
淬火冷却速率对60Si2CrVAT弹簧钢高周疲劳性能的影响 |
雷磊1,2,4,梁益龙1,2,4( ),姜云1,2,3,徐军1,2,4,杨明1,2,4 |
1 贵州大学材料与冶金学院 贵阳 550025 2 贵州省材料结构与强度重点实验室 贵阳 550025 3 贵州大学机械工程学院 贵阳 550025 4 高性能金属结构材料与制造技术国家地方联合工程实验室 贵阳 550025 |
|
Effect of Quench Rate on the High Cycle Fatigue Property of 60Si2CrVAT Spring Steels |
Lei LEI1,2,4,Yilong LIANG1,2,4( ),Yun JIANG1,2,3,Jun XU1,2,4,Ming YANG1,2,4 |
1 College of Materials and Metallurgy,University of Guizhou,Guiyang 550025,China 2 Key Laboratory for Material Structure and Strength of Guizhou Province,Guiyang 550025,China 3 College of Mechanical Engineering,University of Guizhou,Guiyang 550025,China 4 National Local Co-construction Engineering Laboratory for High Performance Metal Structure Material and Manufacture Technology,Guiyang 550025,China |
引用本文:
雷磊,梁益龙,姜云,徐军,杨明. 淬火冷却速率对60Si2CrVAT弹簧钢高周疲劳性能的影响[J]. 材料研究学报, 2017, 31(1): 65-73.
Lei LEI,
Yilong LIANG,
Yun JIANG,
Jun XU,
Ming YANG.
Effect of Quench Rate on the High Cycle Fatigue Property of 60Si2CrVAT Spring Steels[J]. Chinese Journal of Materials Research, 2017, 31(1): 65-73.
[1] | Fu S H, Hui W J, Liu Z H, et al.Fatigue fracture behaviour of a medium-carbon 2000 MPa level high strength spring steel[J]. J. Iron Steel Res., 2006, 18: 30 | [1] | (付书红, 惠卫军, 刘中华等. 一种2000 MPa级中碳高强度弹簧钢的疲劳破坏行为[J]. 钢铁研究学报, 2006, 18: 30) | [2] | Zhao H M, Hui W J, Nie Y H, et al.Very high cycle fatigue fracture behavior of high strength spring steel 60Si2CrVA[J]. Chin. J. Mater. Res., 2008, 22: 526 | [2] | (赵海民, 惠卫军, 聂义宏等. 60Si2CrVA高强度弹簧钢的超高周疲劳破坏行为[J]. 材料研究学报, 2008, 22: 526) | [3] | Wang K, Yin J, Gu W J, et al.Effect of heat treatment on structure and mechanical properties of spring steel 60Si2CrVAT[J]. Spec. Steel, 2007, 28: 56 | [3] | (王凯, 殷匠, 顾文俊等. 热处理对60Si2CrVAT弹簧钢组织和力学性能的影响[J]. 特殊钢, 2007, 28: 56) | [4] | Li Q Z, Gao G H, Zhou L X, et al.A test for optimization of heat treatment process of high strength spring steel 60Si2CrVAT[J]. Spec. Steel, 2012, 33: 49 | [4] | (李秋志, 高国华, 周立新等. 高强度弹簧钢60Si2CrVAT热处理工艺优化试验[J]. 特殊钢, 2012, 33: 49) | [5] | Wu H L, Wang F M, Li C R, et al.Optimization of heat treatment process of 60Si2CrVAT spring steel for high-speed trains[J]. Trans. Mater. Heat Treat., 2011, 32: 35 | [5] | (吴华林, 王福明, 李长荣等. 提速列车用弹簧钢60Si2CrVAT的热处理工艺优化[J]. 材料热处理学报, 2011, 32: 35) | [6] | Li X Q, Zhang Y X, Guo J P.Study on the quenching of spring steels used polyglycol solution[J]. Heat Treat. Metals, 1992, (11): 3 | [6] | (黎秀球, 张亚信, 郭建平. 新型淬火介质在弹簧钢热处理中的应用研究[J]. 金属热处理, 1992, (11): 3) | [7] | Meng X Y, Qin L F.Application of PAG in heat treatment for 50CrVA leaf spring[J]. Hot Work. Technol., 2012, 41: 187 | [7] | (孟宪芸, 秦立富. PAG在50CrVA钢板弹簧热处理中的应用[J]. 热加工工艺, 2012, 41: 187) | [8] | Ma M T.The effect of PAG on the property of spring steel[J]. Autom. Technol. Mater., 1995, (2): 13 | [8] | (马鸣图. PAG类淬火介质对弹簧钢性能的影响[J]. 汽车工艺与材料, 1995, (2): 13) | [9] | Fan J L, Guo X L, Wu C W, et al.Effect of heat treatments on fatigue properties of FV520B steel using infrared thermography[J]. Chin. J. Mater. Res., 2012, 26: 61 | [9] | (樊俊铃, 郭杏林, 吴承伟等. 热处理对FV520B钢疲劳性能的影响[J]. 材料研究学报, 2012, 26: 61) | [10] | Murakami Y, Nomoto T, Ueda T, et al.On the mechanism of fatigue failure in the super-long life regime (N > 107 cycles). Part 1: influence of hydrogen trapped by inclusions[J]. Fatigue Fract. Eng. Mater. Struct., 2000, 23: 893 | [11] | Tanaka K, Akiniwa Y.Fatigue crack propagation behaviour derived from S-N data in very high cycle regime[J]. Fatigue Fract. Eng. Mater. Struct., 2002, 25: 775 | [12] | Lu L T, Shiozawa K, Morii Y, et al.Fatigue fracture process of a high-carbon-chromium bearing steel in ultra-long life regime[J]. Acta. Metall. Sin., 2005, 41: 1066 | [12] | (鲁连涛, 盐泽和章, 森井佑一等. 高碳铬轴承钢超长寿命疲劳破坏过程的研究[J]. 金属学报, 2005, 41: 1066) | [13] | Murakami Y, Kodama S, Konuma S.Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions[J]. Int. J. Fatigue, 1989, 11: 291 | [14] | Sakai T, Sato Y, Oguma N.Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue[J]. Fatigue Fract. Eng. Mater. Struct., 2002, 25: 765 | [15] | Zhang J M, Yang Z G, Li S X, et al.Ultra high cycle fatigue behavior of automotive high strength spring steels 54SiV6 and 54SiCr6[J]. Acta. Metall. Sin., 2006, 42: 259 | [15] | (张继明, 杨振国, 李守新等. 汽车用高强度弹簧钢54SiCrV6和54SiCr6的超高周疲劳行为[J]. 金属学报, 2006, 42: 259) | [16] | Nie Y H, Hui W J, Fu W T, et al.Ultra high cycle fatigue behavior of a medium-carbon high strength spring steel NHS1[J]. Acta. Metall. Sin., 2007, 43: 1031 | [16] | (聂义宏, 惠卫军, 傅万堂等. 中碳强度弹簧钢NHS1超高周疲劳破坏行为[J]. 金属学报, 2007, 43: 1031) | [17] | Zhang Y J, Hui W J, Xiang J Z, et al.Effect of grain size on ultra-high-cycle fatigue properties of 42CrMoVNb steel[J]. Acta. Metall. Sin., 2009, 45: 880 | [17] | (张永健, 惠卫军, 项金钟等. 晶粒尺寸对42CrMoVNb钢超高周疲劳性能的影响[J]. 金属学报, 2009, 45: 880) | [18] | Hong Y S, Fang B.Microscopic process and description for the initiation and propagation of short fatigue cracks[J]. Adv. Mech., 1993, 23: 468 | [18] | (洪友士, 方飚. 疲劳短裂纹萌生及发展的细观过程和理论[J]. 力学进展, 1993, 23: 468) | [19] | Wang X S, Liang F, Zeng Y P, et al.SEM in situ observations to the effects of inclusions on initiation and propagation of the low cyclic fatigue crack in super strength steel[J]. Acta. Metall. Sin., 2005, 41: 1272 | [19] | (王习术, 梁锋, 曾燕屏等. 夹杂物对超高强度钢低周疲劳裂纹萌生及扩展影响的原位观测[J]. 金属学报, 2005, 41: 1272) | [20] | Stormvinter A, Hedstr?m P, Borgenstam A.A transmission electron microscopy study of plate martensite formation in high-carbon low alloy steels[J]. J. Mater. Sci. Technol., 2013, 29: 373 | [21] | Tomita Y, Okabayashi K.Effect of quench rate on microstructure and tensile properties of ALSL 4320 and 4340 steels[J]. Metall. Trans. A, 1987, 18: 115 |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|