Please wait a minute...
材料研究学报  2017, Vol. 31 Issue (1): 74-80    DOI: 10.11901/1005.3093.2016.159
  本期目录 | 过刊浏览 |
镍涂层短碳纤维增强AZ91D镁基复合材料的界面特征和阻尼性能
任富忠(),吴思展,石维
铜仁学院材料与化学工程学院 铜仁 554300
Interface Characteristics and Damping Performance of Ni-coated Short Carbon Fiber Reinforced AZ91D Magnesium Matrix Composites
Fuzhong REN(),Sizhan WU,Wei SHI
College of Material and Chemical Engineering, Tongren University, Tongren 554300, China
引用本文:

任富忠,吴思展,石维. 镍涂层短碳纤维增强AZ91D镁基复合材料的界面特征和阻尼性能[J]. 材料研究学报, 2017, 31(1): 74-80.
Fuzhong REN, Sizhan WU, Wei SHI. Interface Characteristics and Damping Performance of Ni-coated Short Carbon Fiber Reinforced AZ91D Magnesium Matrix Composites[J]. Chinese Journal of Materials Research, 2017, 31(1): 74-80.

全文: PDF(5626 KB)   HTML
摘要: 

使用表面化学镀镍的短碳纤维为增强体、AZ91D粉为基体金属,用粉末冶金法和热挤压工艺制备镁基复合材料,用 SEM、TEM-EDS、拉伸和动态热机械分析(DMA)等手段表征其微观形貌、界面结构、力学性能和阻尼性能,研究了金属镍涂层短碳纤维对AZ91D镁基复合材料的界面和阻尼性能的影响。结果表明,碳纤维在复合材料中分布均匀,沿着挤压方向定向排列; 镍涂层改善了碳纤维与AZ91D基体之间的润湿性;不同频率的应变谱和G-L特征线都表明:复合材料的阻尼机制,除了位错之外还有其他机制;随着应变频率的提高复合材料的阻尼机制由以界面滑移为主转变为以位错为主。随着温度的升高涂层碳纤维增强镁基复合材料的阻尼容量增大,在250~300℃出现一个阻尼峰。随着频率的提高阻尼峰值的温度移向高温,表现出热激活弛豫过程的特征,根据Arrhenius公式计算出其热激活能(H)为3.448 eV。

关键词 复合材料阻尼动态热机械分析短碳纤维AZ91D    
Abstract

Carbon fiber/Mg-alloy composites were fabricated by powder metallurgy technique using short carbon fibers without and with electroless plated Ni-coating as reinforcer and AZ91D powder as matrix.Then their interfacial morphology, elemental composition,mechanical properties and damping capacities were characterized by means of SEM,TEM-EDS,tensile tests and dynamic mechanical analyzer (DMA).Results shows that the carbon fibers are uniformly distributed in the composites and preferentially oriented paralleling to the extrusion direction.The Ni coating improves the wettability between the carbon fibers and AZ91D matrix. Based on the strain spectrum by different frequency strain and G-L characteristic line, it follows that there should be a damping mechanism other than the known dislocation damping mechanism for the composite. With the increasing strain frequency, the control step for the damping performance of composite changes mainly from interface slip to dislocation. The damping capacity of Ni-coated carbon fiber reinforced magnesium matrix composites increase with the rising temperature. One damping peak exists in the range of 250~300 ℃.The peak temperature moves to higher temperature with the increasing frequency,which shows the characteristics of the thermal activation of relaxation process. According to the Arrhenius formula the calculated thermal activation is 3.448 eV.

Key wordscomposite    damping    dynamic thermomechanic analysis    short carbon fiber    AZ91D
收稿日期: 2016-03-24     
图1  涂层短碳纤维的微观形貌
图2  AZ91D镁合金粉末的微观形貌
图3  热挤压后的复合材料棒材
图4  拉伸试样
图5  用于测试阻尼的样品
Strain—Q-1 test T—Q-1 test
Mode single cantilever model
Temperature 25℃ 25~400℃
Frequency 1.0 Hz、4.0 Hz、10.0 Hz、 0.5 Hz、1.0 Hz、4.0 Hz、10.0 Hz
Strain 10-5~10-3 10-4
Heating rate 5℃/min
表1  阻尼测试条件
图6  碳纤维在镁基复合材料中的分布
图7  涂层碳纤维增强镁基复合材料横截面形貌及其线扫描能谱
图8  复合材料界面形貌和能谱分析
图9  三种不同材料的拉伸力学性能
图10  不同增强体复合材料的拉伸断口形貌图
图11  三种不同材料阻尼值随应变振幅的变化
图12  三种不同材料阻尼值随应变振幅的变化
图13  三种不同材料阻尼值随应变振幅的变化
Samples 0.5 Hz 1.0 Hz 4.0 Hz 10.0 Hz
Tp/℃ Tp/℃ Tp/℃ Tp/℃
5.0%(volume fraction)Ni-coated
cf/AZ91D
276.32 280.57 291.55 299.68
表3  5.0%Ni-coated cf/AZ91D复合材料的阻尼峰值温度
图14  两种不同复合材料的G-L线
图15  5.0%(体积分数)Ni-coated cf/AZ91D的Q -1-f-T 特征谱线
图16  测试频率和峰值温度的Arrhenius关系
[1] Zhang X Q, Wang H W, Liao L H, et al.In situ synthesis method and damping characterization of magnesium matrix composites[J].Compos. Sci. Technol., 2007, 67: 720
[2] Ritchie I G, Pan Z L, SprungmannKW, et al.High damping alloys-the metallurgist's cure for unwanted vibrations[J]. Can. Metall. Quart., 1987, 26: 239
[3] Gu J H, Zhang X N, Gu M Y.Mechanical properties and damping capacity of (SiCp + Al2O3SiO2f)/Mg hybrid metal matrix composite[J]. J. Alloys Compd., 2004, 385: 104
[4] Hu X S, Zhang Y K, Zheng M Y, et al.A study of damping capacities in pure Mg and Mg-Ni alloys[J]. Scripta Mater., 2005, 52: 1141
[5] Cao W, Zhang C F, Fan T X, et al.In situ synthesis and damping capacities of TiC reinforced magnesium matrix composites[J]. Mater. Sci. Eng.: A, 2008, 496: 242
[6] G?ken J, Riehemann W.Dependence of internal friction of fibre-reinforced and unreinforced AZ91 on heat treatment[J]. Mater. Sci. Eng. A, 2002, 324: 127
[7] Zhang X Q, Wang H W, Liao L H, et al.The mechanical properties of magnesium matrix composites reinforced with (TiB2 + TiC) ceramic particulates[J]. Mater. Lett., 2005, 59: 2105
[8] Zhang X L, Li T J, Teng H T, et al.Semisolid processing AZ91 magnesium alloy by electromagnetic stirring after near-liquidus isothermal heat treatment[J]. Mater. Sci. Eng. A, 2008, 475: 194
[9] Shen M J, Zhang M F, Ying W F.Processing, microstructure and mechanical properties of bimodal size SiCp reinforced AZ31B magnesium matrix composites[J]. J. Magn. Alloys, 2015, 3: 162
[10] Deng K K, Li J C, Nie K B, et al.High temperature damping behavior of as-deformed Mg matrix influenced by micron and submicron SiCp[J]. Mater. Sci. Eng.A, 2015, 624: 62
[11] Wu Y W, Wu K, Nie K B, et al.Damping capacities and tensile properties in Grp/AZ91 and SiCp/Grp/AZ91 magnesium matrix composites[J]. Mater. Sci. Eng.A, 2010, 527: 7873
[12] Wu Y W, Wu K, Deng K K, et al.Effect of extrusion temperature on microstructures and damping capacities of Grp/AZ91 composite[J]. J. Alloys Compd., 2010, 506: 688
[13] Wu Y W, Wu K, Deng K K, et al.Damping capacities and tensile properties of magnesium matrix composites reinforced by graphite particles[J]. Mater. Sci. Eng.A, 2010, 527: 6816
[14] Gao J C, Tan Z, Ren F Z.Study on kinetics and technology of Ni electroless plating on carbon fibers[J]. J. Funct. Mater., 2011, 42: 1360
[14] (高家诚, 谭尊, 任富忠. 碳纤维表面化学镀镍工艺及机理研究[J]. 功能材料, 2011, 42: 1360)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.