Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (8): 589-594    DOI: 10.11901/1005.3093.2016.163
  本期目录 | 过刊浏览 |
Ni-Cr-Co-Mo-W-Ta-Al合金在900℃和1000℃的高温氧化行为*
卢旭东, 王复利
沈阳理工大学装备工程学院 沈阳 110159
Isothermal Oxidation Behaviour of Ni-Cr-Co-Mo-W-Ta-Al Superalloy at 900℃ and 1000℃
LU Xudong**, WANG Fuli
Department of Weapon Launching Engineering, Shenyang Ligong University, Shenyang 110168, China
引用本文:

卢旭东, 王复利. Ni-Cr-Co-Mo-W-Ta-Al合金在900℃和1000℃的高温氧化行为*[J]. 材料研究学报, 2016, 30(8): 589-594.
Xudong LU, Fuli WANG. Isothermal Oxidation Behaviour of Ni-Cr-Co-Mo-W-Ta-Al Superalloy at 900℃ and 1000℃[J]. Chinese Journal of Materials Research, 2016, 30(8): 589-594.

全文: PDF(4434 KB)   HTML
摘要: 

采用X射线衍射(XRD), 扫描电镜(SEM)及能谱(EDAX)等方法, 研究了Ni-4.66Cr-5.87Co-7.54Mo-2.90W-4.97Ta-6.32Al合金在900℃和1000℃的高温氧化行为。结果表明, 合金氧化动力学曲线遵循氧化初期氧化增重速率较快, 氧化期间氧化动力学曲线呈波浪式变化, 且呈现氧化温度越高波浪式越明显的特征; 氧化300 h后合金表面氧化物膜分为2层, 外层氧化物为NiO、Ni2Cr2O4、Ni2CoO4和CoTa2O6, 分布在外层的CoTa2O6抑制基体中元素Al向外扩散, 形成内层氧化物Al2O3。在氧化期间, 合金内部生成了内氮化物AlN, 且在合金内部AlN与Al2O3成规律性分布, 与外氧化膜相邻的为元素Al的内氧化物Al2O3区域, 远离外氧化膜的基体内部为元素Al的内氮化物AlN区域, 随氧化温度升高, 内氧化区和内氮化区的深度增加, 内氧化物和内氮化物的尺寸增大。

关键词 金属材料镍基合金恒温氧化动力学曲线内氧化内氮化    
Abstract

The oxidation behavior of a superalloy Ni-4.66Cr-5.87Co-7.54Mo-2.90W-4.97-Ta-6.32Al at 900℃ and 1000℃ in air has been investigated by means of TGA, XRD and SEM/EDAX. Results show that the oxidation rate in the initial stage is rapid, then with the oxidation time the oxidation weight gain tends to be smooth, but the oxidation kinetics curve for the superalloy later presents a wavy-like change and much obviously for the higher oxidation temperature. The oxide scales consist of two layers both at 900℃ and 1000℃. Of which , the outer layer is mainly composed of NiO、Ni2Cr2O4、Ni2CoO4 and CoTa2O6, while the inner layer is a thin scale of Al2O3. The continuous oxide layer of Al2O3 is formed on the alloy surface to restrain the growth of oxide scale and decrease the oxidation rate. The precipitates of internal oxide (Al2O3) and internal nitride (AlN) formed in the superalloy after exposure for 300h at 900℃ and 1000℃; the internal oxidation zone forms on the surface of the superalloy just beneath the outer layer of the oxide scale, while the internal nitridation zone forms below the internal oxidation zone; with the increasing temperature the internal oxidation zone and internal nitridation zone became thicker, simultaneity the size of internal nitride and internal oxide increases.

Key wordsmetallic materials    Ni-base superalloy    isothermal oxidation    kinetics curves    internal oxidation    internal nitridation
收稿日期: 2016-03-28     
基金资助:* 辽宁省教育厅资金资助L2012063, 辽宁省省博士科研基金资助20141088
作者简介: 本文联系人: 卢旭东
图1  合金分别在900℃和1000℃氧化300 h的氧化增重动力学曲线
图2  合金在900℃和1000℃下氧化300 h后的表面XRD分析
图3  合金在不同温度氧化300 h后的表面形貌
图4  合金在不同温度氧化300 h后的横截面形貌
图5  经1000℃氧化 300 h 后氧化物膜横断面的形貌及成分分布
Compound 900℃ 1000℃
Al2O3 -1296 -1263
Cr2O3 -814 -789
NiO -134 -126
CoO -153 -145
Ta2O5 -1541 -1500
AlN -189 -177
CrN -27 -20
TaN -152 -144
表1  相关化合物的吉布斯自由能
1 LU Xudong, TIAN Sugui, WANG Tao, ZHU Degang, Hot corrosion behaviour of sputtered NiCrAlY nanocrystalline coating in molten sulfate at 900℃, Transactions of Materials and Heat Treatment, 34(10), 153(2013)
1 (卢旭东, 田素贵, 王涛, 朱德刚, 溅射NiCrAlY纳米晶涂层在900℃的热腐蚀行为, 材料热处理学报, 34(10), 153(2013))
2 PARK Sijun, SEO Seongmoon, YOO Youngsoo, JEONG Hiwon, JANG Heejin, Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys, Corrosion Science, 90, 205(2015)
doi: 10.1016/j.corsci.2014.10.025
3 J. Brennemana, J. Weib, Z. Sunb, L. Liub, G. Zoub, Y. Zhou.Oxidation behavior of GTD111 Ni-based superalloy at 900℃ in air, Corrosion Science, 100, 267(2015)
doi: 10.1016/j.corsci.2015.07.031
4 WU Mingyu, CHEN Minghui, ZHU Shenglong, WANG Fuhui, Effect of sand blasting on oxidation behavior of K38G superalloy at 1000℃, Corrodion Science, 92, 256(2015)
doi: 10.1016/j.corsci.2014.12.015
5 LI Yun, SHANG Haibo, GUO Jianting, YUAN Chao, YANG Hongcai, Isothermal oxidation behavior of a cast Ni-base superalloy K35, Acta Metallurgica Sinica, 39(7), 751(2003)
5 (李云, 尚海波, 郭建亭, 袁超, 杨洪才, 镍基铸造高温合金K35的高温氧化行为, 金属学报, 39(7), 751(2003))
doi: 10.3321/j.issn:0412-1961.2003.07.015
6 SUN Chaoyang, CHEN Guicai, WU Chuanbiao, Xu Wenliang, MA Tianjun, YANG Jing, High temperature oxidation behavior of typical nickelbased superalloys, Corrosion Science and Protection Technology, 26(4), 348(2014)
6 (孙朝阳, 陈桂才, 武传标, 徐文亮, 马天军, 杨竞, 典型耐热镍基合金抗高温氧化行为研究, 腐蚀科学与防护技术, 26(4), 348(2014))
doi: 10.11903/1002.6495.2014.132
7 PARK Sijun, SEO Seongmoon, YOO Youngsoo, Jeong HIwon, JANG Heejin, Effects of Al and Ta on the high temperature oxidation of Ni-based superalloys, Corrosion Science, 90, 312(2015)
doi: 10.1016/j.corsci.2014.10.025
8 L. Huang, X. G. Sun, H. R. Guan, Z. Q. Hu, Oxidation behaviour of the single crystal Ni-base superalloy DD32 in air at 900, 1000℃ and 1100℃, Oxidation Metals, 65(5/6), 403(2006)
doi: 10.1007/s11085-006-9029-7
9 Wallwork G.R., Hed A. Z., Some limiting factors in the use of alloys at high temperatures, Oxidation Metals, 3(2), 180(1971)
doi: 10.1007/BF00603485
10 LI Weiyin, LIU Hongfei, ZHAO Shuangqun, Oxidation behavior of a newNi-based superalloy at 950℃, Transactions of Material and Treatment, 29(30), 28(2008)
10 (李伟银, 刘红飞, 赵双群, 新型镍基高温合金950℃氧化行为的研究, 材料热处理学报, 29(30), 28(2008) )
11 LIANG Yingjiao, CHE Yinchang, The Handbook of Abio-compound Thermodynamics Data, (Shenyang, Northeast University Press, 1993)p. 449
11 (梁英教, 车荫昌, 无机热力学数据手册 (沈阳, 东北大学出版社, 1993))p. 449
12 Y. Z. Liu, X. B. Hu, S. J. Geng, Y. L. Zhu, H. Wei, X. L. Ma, Microstructural evolution of the interface between NiCrAlY coating and superalloy during isothermal oxidation, Materials and Design, 80, 65(2015)
doi: 10.1016/j.matdes.2015.05.014
13 LI Meishuan, High Temperature Oxidation of Metals, the First Edition (Beijing, Metallurgy Industry Press, 2001) p.162
13 (李美栓, 金属的高温腐蚀, 第一版 (北京, 冶金工业出版社, 2001)) p.162
14 LIU Tao, DONG Jiashen, LI Hui, LI Zhijun, ZHOU Xingtai, LOU Langhong, Oxidation behavior of GH3535 superalloy at 700℃ and 800℃, Chinese Journal of Materials Research, 28(12), 895(2014)
14 (刘涛, 董加胜, 李辉, 李志军, 周兴泰, 楼琅洪, GH3535 合金在700℃和900℃的氧化行为, 材料研究学报, 28(12), 895(2014))
15 LU Xudong, TIAN Sugui, CHEN Tao, GUO Cean, LI Guangrui, Internal oxidation and internal sulfuration of Ni-base alloy with high Cr content during hot corrosion in molten sulfate, Rare Metal Materials and Engineerring, 43(1), 81(2014)
15 (卢旭东, 田素贵, 陈涛, 郭策安, 李光瑞, 高铬镍基合金熔融硫酸盐热腐蚀过程中内氧化和内硫化行为的研究, 稀有金属材料与工程, 43(1), 81(2014))
16 WU Mingyu, CHEN Minghui, ZHU Shenglong, WANG Fuhui, Effect of sand blasting on oxidation behavior of K38G superalloy at 1000℃, Corrosion Science, 92, 259(2015)
doi: 10.1016/j.corsci.2014.12.015
17 L. Huang, X. F. Sun, H. R. Guan, Z. Q. Hu, Oxidation behavior of the directionally solidified Ni-base superalloy DS951 in air, Oxidation Metals, 64(5/6), 303(2005)
doi: 10.1007/s11085-005-8529-1
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.