Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (8): 581-588    DOI: 10.11901/1005.3093.2016.150
  本期目录 | 过刊浏览 |
MWNTs/CMSs/PET阻燃材料的结构及阻燃机理*
薛宝霞2, 牛梅1,2, 李京京2, 杨雅茹2, 戴晋明1,2
1. 太原理工大学新材料界面科学与工程教育部重点实验室太原030024
2. 太原理工大学轻纺工程学院榆次030600
Structure and Flame Retardant Property of Composite Materials MWNTs/CMSs/PET
XUE Baoxia2, NIU Mei1,2,**, LI Jingjing2, YANG Yaru2, DAI Jinming1,2
1. Key Laboratory of Interface Science and Engineering in Advanced Materials , Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, China
2. College of Textile Engineering , Taiyuan University of Technology, Yuci 030600, China
引用本文:

薛宝霞, 牛梅, 李京京, 杨雅茹, 戴晋明. MWNTs/CMSs/PET阻燃材料的结构及阻燃机理*[J]. 材料研究学报, 2016, 30(8): 581-588.
Baoxia XUE, Mei NIU, Jingjing LI, Yaru YANG, Jinming DAI. Structure and Flame Retardant Property of Composite Materials MWNTs/CMSs/PET[J]. Chinese Journal of Materials Research, 2016, 30(8): 581-588.

全文: PDF(2801 KB)   HTML
摘要: 

采用熔融共混法与阻燃剂复配法制备了MWNTs/CMSs/PET复合材料。通过扫描电镜(SEM)、极限氧指数法(LOI)、UL94垂直燃烧法、锥形量热仪(Cone)及热重红外联用分析仪(TG-IR)表征了样品的结构、阻燃性能及热降解行为, 分析了MWNTs/CMSs阻燃PET材料的阻燃机理。结果表明, 当MWNTs/CMSs添加量为1%(质量分数), MWNTs与CMSs质量比为1: 1/2时, 二者可有机地结合为一个整体, 有利于MWNTs/CMSs在PET基材中发挥协同阻燃作用。与纯PET及CMSs/PET相比, MWNTs/CMSs/PET能有效降低火灾危险性。MWNTs/CMSs阻燃PET主要是通过MWNT与CMSs两者的协同作用延缓PET热裂解行为, 一方面MWNTs在其燃烧时可在PET表面形成致密的网络状炭层结构, 减少了熔滴的产生; 另一方面CMSs其燃烧时在PET表面形成湍流炭, 以此阻止氧气和热量进入PET内部, 同时释放出不燃气体CO2以降低周围环境中可燃气体的浓度, 阻止燃烧的继续进行, 最终实现了MWNTs/CMSs/PET材料的良好阻燃。

关键词 复合材料阻燃机理PET多壁碳纳米管碳微球    
Abstract

Composites of Multi-walled carbon nanotubes (MWNTs), carbon microspheres (CMSs) and Polyethylene terephthalate (PET) were prepared by melt blending method.The structures, flame retardancy and pyrolysis behavior of the composites were characterized by scanning electron microscope (SEM)and infrared spectroscopy (IR), as well as limiting oxygen index (LOI)method, vertical burning method (UL-94), cone calorimeter and thermal gravimetric analysis (TG).The results showed that the addition of 1% (mass fraction) of (1MWNTs + 0.5CMSs) into PET resulted in a good comprehensive flame retardancyof the composite. Moreover, in comparison with the pure PET and CMSs/PET, the composites MWNTs/CMSs/PET could reduce effectively the fire risk. The pyrolysis process of PET could be suppressed by the synergistic effect of MWNTs and CMSs due to the following that during burning, on one hand, MWNTs might give rise to form a three-dimensional network of compact carbon layeron the PET surface to decrease the melt drips; on the other hand, CMSs might produce a turbulent carbon layer on the surface of PET, preventing the oxygen and heat from entering the interior of PET and thus releasing the non-flammable CO2 to reduce the concentration of combustible gas in the surrounding environment.

Key wordscomposite    flame retardant mechanism    polyethylene terephthalate    multi-walled carbon nanotubes    carbon microspheres
收稿日期: 2016-03-19     
基金资助:* 国家自然科学(青年)资金51302183, 国家自然科学基金51443005, 山西省自然科学(青年)基金2012021021-6, 山西省自然科学基金2014011016-5资助
作者简介: 本文联系人: 牛 梅
Items LOI
/%
tf
/s
Dripping
/dmin-1
Burning grades
Pure PET 21.7 165.0 24 V-2
CMSs/PET(1%, mass fraction) 28.9 39.5 13 V-0
MWNTs/CMSs/PET
(1%, mass fraction)
The mass ratio of MWNTs and CMSs 1:1/4 26.2 22 3 V-0
1:1/2 27.3 6.5 4 V-0
1:1 27.7 16 7 V-0
1:2 28.2 20 8 V-0
1:4 28.6 24.5 11 V-0
表1  MWNTs/CMSs /PET复合材料的极限氧指数及垂直燃烧参数
图1  不同配比MWNTs/CMSs/PET复合材料的SEM图
Items PET CMSs/PET MWNTs/CMSs/PET
TTI(s) 28 43 52
FPI(sm2/kW) 0.0542 0.0879 0.0953
TTF(s) 473 401 364
CO(kg/kg) 0.0467 0.0359 0.0347
表2  不同PET复合材料的锥形量热测试数据
图2  锥形量热测试后的残炭结构
图3  PET在氧气气氛下的TG-DTG图谱(a)及不同失重阶段降解产物的IR图(b) (IR图中的A:第一失重阶段; B:第二失重阶段)
图4  MWNTs/CMSs/PET在氧气气氛下的TG-DTG图谱(a)及不同失重阶段降解产物的IR图(b) (IR图中的A: 第一失重阶段; B: 第二失重阶段)
1 GUO Deming, JING Xinke, WU Jianing, OU Yingqing, DIFeiyu, CHEN Li, WANG Yuzhong, Synthesis and characterization of a flame-retardant and anti-dripping copolyester, Acta Polymerica Sinica, (9), 1042(2012)
1 (郭德明, 敬新柯, 吴嘉宁, 欧影轻, 翟飞玉, 陈力, 王玉忠, 一种新型阻燃抗熔滴共聚酯的合成及表征, 高分子学报, (9), 1042(2012))
2 ZHOU Qilin, ZHANG Yue, LI Qiuying, WU Chifei, UV protection property and crystallization behavior of PET/modified carbon black nano composite films, Polymer Material Science and Engineering, 28(3), 92(2012)
2 (周麒麟, 张玥, 李秋影, 吴驰飞, PET/改性炭黑纳米复合材料薄膜的抗紫外性能和结晶行为, 高分子材料科学与工程, 28(3), 92(2012))
3 JIN Xin, XIAO Changfa, YU Chuankun, XIE Chun, Non-continuous conductive behavior of CB/PET Fiber, Chinese Journal of Material Research, 24(3), 312(2010)
3 (金欣, 肖长发, 俞传坤, 谢淳, 碳黑/聚酯纤维非连续性导电行为的研究, 材料研究学报, 24(3), 312(2010))
4 B.Dittrich, K.A.Wartig, D.Hofmann, R. Muelhaupt, B.Schartel, Flame retardancy through carbon nanomaterials: Carbon black, multiwall nanotubes, expanded graphite, multi-layer graphene and graphene in polypropylene, Polymer Degradation and Stability, 98(8), 1495(2013)
doi: 10.1016/j.polymdegradstab.2013.04.009
5 H. F. Yang, J. Gong, X. Wen, J. Xue, Q. Chen, Z.W. Jiang, N.N. Tian, T. Tang, Effect of carbon black on improving thermal stability, flame retardancy and electrical conductivityof polypropylene/carbon fiber composites, Composites Sciences and Technology, 113, 31(2015)
doi: 10.1016/j.compscitech.2015.03.013
6 ZHANG Jianjun, ZHANG Jingzong, JI Quan, XIA Yanzhi, KONG Qingshan, Combustion property and flame-retardant mechanism of MWNTs- OH/PET composites, Journal of Functional Materials, 41(3), 394(2010)
6 (张建军, 张靖宗, 纪全, 夏延致, 孔庆山, MWNTs-OH/PET纳米复合材料的燃烧性能与阻燃机理研究, 功能材料, 41(3), 394(2010))
7 B. H. Cipiriano, T. Kashiwagi, S. R. Raghavan, Y.Yang, E. A. Grulke, K. Yamamoto, J. R. Shields, J. F. Douglas, Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites, Polymer, 48(20), 6087(2007)
doi: 10.1016/j.polymer.2007.07.070
8 G. B. Huang, S. Q. Wang, P. A. Song, C. L. Wu, S. Q. Chen, X. Wang, Combination effect of carbon nanotubes with graphene on intumescent flame-retardant polypropylene nanocomposites, Composites: Part A-Applied Science and Manufacturing, 59, 18(2014)
doi: 10.1016/j.compositesa.2013.12.010
9 B. T. Zhang, X. X. Zheng, H. F. Li, J. M. Lin, Application of carbon-based nanomaterials in sample preparation: A review, AnalyticaChimicaActa, 784, 2(2013)
doi: 10.1016/j.aca.2013.03.054 pmid: 23746402
10 NIU Mei, XUE Baoxia, LI Jingya, WANG Xin, DAI Jinming, Preparation and Properties of CMSs-An/PET Flame Retardant Composites, Chinese Journal of Material Research, 29(2), 144(2015)
10 (牛梅, 薛宝霞, 李静亚, 王欣, 戴晋明, CMSs-An/PET 复合阻燃材料的制备和性能, 材料研究学报, 29(2), 144(2015))
11 XUE Baoxia, NIU Mei, ZHANG Ying, WANG Xin, YANG Yaru, DAI Jinming, Characterization of the properties of flame retardant PET composites with different nano-carbons, Polymer Material Science and Engineering, 31(4), 65(2015)
11 (薛宝霞, 牛梅, 张莹, 王欣, 杨雅茹, 戴晋明, 不同纳米碳材料阻燃聚对苯二甲酸乙二醇酯复合材料性能的表征, 高分子材料科学与工程, 31(4), 65(2015))
12 CUI Hongmei, LIU Hong, WANG Jiyang, LI xia, HAN Feng, Agglomeration and disperasion of nano-scale powders, Materials for Mechanical Engineering, 28(8), 38(2004)
12 (崔洪梅, 刘宏, 王继扬, 李霞, 韩峰, 纳米粉体的团聚与分散, 机械工程材料, 28(8), 38(2004))
doi: 10.3969/j.issn.1000-3738.2004.08.014
13 YE Lei, WU Qianghua, QUBaojun, Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposites, Polymer Degradation and Stability, 94(5), 751(2009)
doi: 10.1016/j.polymdegradstab.2009.02.010
14 LIU Fang, SUN Ling, LUO Yuanfang, JIA Demin, Research on flame retardant polypropylene using cone calorimeter, Journal of South China University of Technology (Natural Science Edition), 37(3), 10(2009)
14 (刘芳, 孙令, 罗远芳, 贾德民, 用锥形量热仪研究膨胀性非卤阻燃聚丙烯阻燃性, 华南理工大学学报(自然科学版), 37(3), 10(2009))
doi: 10.3321/j.issn:1000-565X.2009.03.003
15 OU Yuxiang, LI Jianjun, Testing Methods of Material Flame Retardant, 1sted(Beijing, Chemical Industry Press, 2007)p.140
15 (欧育湘, 李建军, 材料阻燃性能测试方法, 第1版 (北京, 化学工业出版社, 2007)p.140
doi: 10.7666/d.y1525753
16 HU Xiaoping, Synthesis and application of intumescent flame retardant of polyethylene and their action mechanism, Doctoral Dissertation (Sichuan University, 2005)
16 (胡小平, 聚乙烯用新型膨胀型阻燃剂的合成与应用及阻燃机理研究, 博士学位论文(四川大学, 2005))
doi: 10.7666/d.y775622
17 P. A. Song, H. Liu, Y. Shen, B. A. Du, Z. P. Fang, Y. Wu, Fabrication of dendrimer-like fullerene (C60)-decorated oligomeric intumescent flame retardant for reducing the thermal oxidation and flammability of polypropylene nanocomposites, Material Chemistry, 19(9), 1305(2009)
18 WENG Shifu, Fourier Transform Infrared Spectroscopy Analysis, 2nded(Beijing, Chemical Industry Press, 2010)p.291-328
18 (翁诗甫, 傅里叶变换红外光谱分析, 第2版 (北京, 化学工业出版社, 2010)p.291-328)
19 WANG Liansheng, CHEN Kequan, ZHOU Yan, Study on heat decomposition stability of Poly(co-ehylene glycol/1, 4-cyclohexanedimethylne terephthalate) resins, Synthetic Fiber in China, 6(1), 1(2005)
19 (王濂生, 陈克权, 周燕, PETG树脂热分解稳定性研究, 合成纤维, 6(1), 1(2005))
doi: 10.3969/j.issn.1001-7054.2005.06.001
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.