Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (6): 409-417    DOI: 10.11901/1005.3093.2015.696
  研究论文 本期目录 | 过刊浏览 |
大变形管线钢中F/B多相组织应变硬化行为和应力比研究*
汤忖江1, 尚成嘉1(), 关海龙1,2, 王学敏1
1. 北京科技大学材料科学与工程学院 北京 100083
2. 建龙集团 遵化 064200
Strain Hardening Behavior and Stress Ratio of High Deformability Pipeline Steel with Ferrite/Bainite Multi-phase Microstructure
TANG Cunjiang1, SHANG Chengjia1,**(), GUAN Hailong1,2, WANG Xuemin1
1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2. Jianlong Group, Zunhua 064200, China
引用本文:

汤忖江, 尚成嘉, 关海龙, 王学敏. 大变形管线钢中F/B多相组织应变硬化行为和应力比研究*[J]. 材料研究学报, 2016, 30(6): 409-417.
Cunjiang TANG, Chengjia SHANG, Hailong GUAN, Xuemin WANG. Strain Hardening Behavior and Stress Ratio of High Deformability Pipeline Steel with Ferrite/Bainite Multi-phase Microstructure[J]. Chinese Journal of Materials Research, 2016, 30(6): 409-417.

全文: PDF(1122 KB)   HTML
摘要: 

采用TMCP工艺获得了5种不同贝氏体体积分数的铁素体/贝氏体(F/B)多相钢。通过纵向力学性能分析, 并结合修正C-J分析方法研究了以F/B多相组织为特征的大变形管线钢的应变硬化行为, 获得了F/B多相钢中贝氏体体积分数与应力比、屈强比的关系, 并通过修正C-J分析对此现象的机理进行了合理的阐释。结果表明, 大变形管线钢的弹性形变阶段主要对应修正C-J分析中的第I阶段, 塑性形变阶段包括修正C-J分析第II和第III阶段, 屈服点(应变0.5%)附近阶段可跨越第I和第II阶段。F/B多相钢中各阶段的应变硬化能力存在显著差异, 并且其应变硬化行为呈现出与贝氏体体积分数相关的特性。通过适宜的组织调控可以实现管线钢强度和塑性的最佳匹配。应力比Rt1.5/Rt0.5适宜用于表征管材屈服点附近的应变硬化能力, 应力比Rt2/Rt1Rt5/Rt1均适宜用于表征X70级管线钢塑性阶段应变硬化能力, Rt2/Rt1较适宜用于表征X80级管线钢塑性阶段应变硬化能力。

关键词 金属材料铁素体/贝氏体多相钢大变形管线钢应变硬化行为修正C-J分析贝氏体体积分数应力比屈强比    
Abstract

Five ferrite/bainite (F/B) multi-phase steels with different volume fractions of bainite were obtained by TMCP process. The strain hardening behavior of high deformability pipeline steel with F/B multi-phase was studied by the analysis of longitudinal mechanical properties and modified C-J analysis. The relationships between volume fraction of bainite and stress ratio as well as yield ratio were analyzed, and relevant mechanisms were illustrated by modified C-J analysis. The results show that the stage of elastic deformation of high deformability pipeline steel mainly corresponds to stage I in modified C-J analysis, and the stage of plastic deformation consists of stage II and stage III; and the stage near yield point (0.5% strain) can go across stage I and stage II. However, the strain hardening capability of each stage is obviously different from each other, and the strain hardening behavior is closely related to the volume fraction of bainite in F/B multi-phase steel. The optimal matching between strength and plasticity of pipeline steel can be achieved by controlling the microstructure suitably. The stress ratio of Rt1.5/Rt0.5 is appropriate to describe the strain hardening capability near the yield point, and the stress ratios of Rt2/Rt1 and Rt5/Rt1 are appropriate to represent the strain hardening capability of plastic deformation stage in X70 grade pipeline steel. The stress ratio of Rt2/Rt1 is suitable to characterize the strain hardening capability of plastic deformation stage in X80 grade pipeline steel.

Key wordsmetallic materials    ferrite/bainite multi-phase steel    high deformability pipeline steel    strain hardening behavior    modified C-J analysis    volume fraction of bainite    stress ratio    yield ratio
收稿日期: 2015-12-02     
ZTFLH:  TG142.1  
基金资助:* 国家重点基础研究发展计划2010CB630801资助项目
作者简介: 本文联系人: 尚成嘉, 教授
图1  TMCP工艺示意图
C Si Mn Ti Nb Ni+Cr+Cu
0.04 0.22 1.75 0.015 0.095 0.5
表1  实验钢化学成分(质量分数,%)
图2  TMCP工艺获得实验钢的微观组织
图3  实验钢工程应力-应变曲线
Experimental
steel
Volume fraction of
Bainite/%
Engineering value
Rt0.5/MPa Rm/MPa UEL/% Agt/% TEL/%
No.1 0 513 668 11.8 12.2 -
No.2 27.9 520 774 10.8 11.5 31.7
No.3 47.0 560 848 9.0 9.6 28.9
No.4 65.9 638 914 6.1 6.7 25.7
No.5 100 914 1031 1.4 1.6 -
表2  实验钢中贝氏体体积分数和纵向力学性能
图4  实验钢中贝氏体体积分数对应力比和屈强比的影响
图5  实验钢中贝氏体体积分数对工程应力的影响
图6  实验钢的修正C-J分析曲线
Experimental
Steel
Stage I Stage II Stage III Engineering strain/%
1-m 1/m 1-m 1/m 1-m 1/m Transition strain Elongation
at maximum force (Agt)
εt1
(stage I-II)
εt2
(stage II-III)
No.1 -14.8 0.06 -4.6 0.18 -13.4 0.07 0.6 3.3 12.2
No.2 -6.5 0.13 -6.9 0.13 -9.3 0.10 0.8 4.6 11.5
No.3 -4.9 0.17 -9.6 0.09 -11.3 0.08 0.8 3.1 9.6
No.4 -4.0 0.20 -12.5 0.07 0.7 6.7
No.5 -3.3 0.23 -24.3 0.04 0.4 1.6
表3  实验钢的修正C-J分析中各阶段应变硬化能力和转折应变(εt)
图7  修正C-J分析中转折应变(εt1、εt2)在实验钢工程应力-应变曲线的位置
图8  在X70-X80强度级别范围内实验钢的屈服强度(Rt0.5)与应力比的关系
The grade of
experimental steels
(interval of yield stress/MPa)
Slope of linear fitting
(absolute value)
Standard deviation of stress ratio
(sample estimation)
Rt1.5/Rt0.5 Rt2/Rt1 Rt5/Rt1 Rt1.5/Rt0.5 Rt2/Rt1 Rt5/Rt1
X70 (485-635) 0.0025 0.0002 0.0003 0.107 0.014 0.016
X80 (555-705) 0.0006 0.0003 0.0006 0.053 0.011 0.026
表4  X70-X80强度级别范围内实验钢的应力比线性拟合斜率绝对值和标准差
图9  X70-X80强度级别范围内实验钢的应力比与标准规定应力比的关系
1 H. G. Hillenbrand, A. Liessem, K. Biermann, C. J. Heckmann, V. Schwinn, Development of high strength material and pipe production technology for grade X120 line pipe, in: Proceedings of IPC2004 International Pipeline Conference, edited by AMSE (Calgary, Alberta, Canada, 2004) p.1-7
doi: 10.1115/IPC2004-0224
2 GAO Huilin, The challenges for pipeline projects and development trend of pipeline steel, Weld Pipe and Tube, 33(10), 5(2010)
2 (高惠临, 管道工程面临的挑战与管线钢的发展趋势, 焊管, 33(10), 5(2010))
doi: 10.3969/j.issn.1001-3938.2010.10.001
3 LI Helin, LI Xiao, JI Lingkang, CHEN Hongda, Strain-based design for Pipeline and development of pipe steels with high deformation resistance, Weld Pipe and Tube, 30(5), 5(2007)
3 (李鹤林, 李霄, 吉玲康, 陈宏达, 油气管道基于应变的设计及抗大变形管线钢的开发与应用, 焊管, 30(5), 5(2007))
doi: 10.3969/j.issn.1001-3938.2007.05.001
4 GAO Huilin, ZHANG Xiaoyong, Research and development of large deformability pipeline steels, Weld Pipe and Tube, 37(4), 14(2014)
4 (高惠临, 张骁勇, 大变形管线钢的研究和开发, 焊管, 37(4), 14(2014))
doi: 10.3969/j.issn.1001-3938.2014.04.004
5 LI Helin, JI Lingkang, TIAN Wei, Significant technical progress in the West-East Gas Pipeline projects-Line One and Line Two, Natural Gas Industry, 30(4), 1(2010)
5 (李鹤林, 吉玲康, 田伟, 西气东输一, 二线管道工程的几项重大技术进步, 天然气工业, 30(4), 1(2010))
doi: 10.3787/j.issn.10000976.2010.04.001
6 L. K. Ji, H. Y. Chen, C. Y. Huo, H. L. Li, C. J. Zhuang, S. T. Gong, W. Z. Zhao, H. L. Gao, Key issues in the specification of high strain line pipe used in strain-based designed districts of the 2nd west to east pipeline, in: Proceeding of IPC2008 7th International Pipeline Conference, edited by AMSE (Calgary, Alberta, Canada, 2008) p.1-9
7 N. Ishikawa, M. Okatsu, S. Endo, J. Kondo, Design concept and production of high deformability linepipe, in: Proceeding of IPC2006 6th International Pipeline Conference, edited by AMSE (Calgary, Alberta, Canada, 2006) p.1-8
doi: 10.1115/IPC2006-10240
8 ZHANG Xiaoyong, GAO Huilin, XU Xueli, BI Zongyue, Deformation and fracture behavior of X80 pipeline steel with excellent deformability, Transactions of Materials and Heat Treatment, 35(2), 75(2014)
8 (张骁勇, 高惠临, 徐学利, 毕宗岳, X80大变形管线钢的变形与断裂行为, 材料热处理学报, 35(2), 75(2014))
9 C. J. Shang, D. X. Xia, X. L. Wang, X. C. Li, W. J. Nie, The Development of Third-generation Pipeline Steel in China, in: Proceeding of 6th International Pipeline Technology Conference, edited by AMSE (Ostend, Belgium, 2013) p.1-14
10 NIE Wenjin, SHANG Chengjia, GUAN Hailong, ZHANG Xiaobing, CHEN Shaohui, Control of microstructures of ferrite/bainite (F/B) dual-phase steels and analysis of their resistance to deformation behavior, Acta Metallurgica Sinica, 48(3), 298(2012)
10 (聂文金, 尚成嘉, 关海龙, 张晓兵, 陈少慧, 铁素体/贝氏体 (F/B) 双相钢组织调控及其抗变形行为分析, 金属学报, 48(3), 298(2012))
doi: 10.3724/SP.J.1037.2011.00634
11 JIAO Duotian, CAI Qingwu, WU Huibin, Effects of cooling process after rolling on microstructure and yield ratio of high-strain pipeline steel X80, Acta Metallurgica Sinica, 45(9), 1111(2009)
11 (焦多田, 蔡庆伍, 武会宾, 轧后冷却制度对 X80 级抗大变形管线钢组织和屈强比的影响, 金属学报, 45(9), 1111(2009))
12 X. Y. Zhang, H. L. Gao, X. Q. Zhang, Y. Yang, Effect of volume fraction of bainite on microstructure and mechanical properties of X80 pipeline steel with excellent deformability, Materials Science and Engineering A, 531, 84(2012)
13 L. K. Ji, H. L. Li, H. T. Wang, J. M. Zhang, W. Z. Zhao, H. Y. Chen, Y. Li, Q. Chi, Influence of dual-phase microstructures on the properties of high strength grade line pipes, Journal of Materials Engineering and Performance, 23(11), 3867(2014)
doi: 10.1007/s11665-014-1184-4
14 A. Kumar, S. B. Singh, K. K. Ray, Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels, Materials Science and Engineering A, 474(1-2), 270(2008)
doi: 10.1016/j.msea.2007.05.007
15 A. Bag, K. K. Ray, E. S. Dwarakadasa, Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels, Metallurgical and Materials Transactions A, 30(5), 1193(1999)
doi: 10.1007/s11661-999-0269-4
16 GAO Huilin, Analysis and commentary on yield ratio of pipeline steel, Weld Pipe and Tube, 33(6), 10(2010)
16 (高惠临, 管线钢屈强比分析与评述, 焊管, 33(6), 10(2010))
doi: 10.3969/j.issn.1001-3938.2010.06.002
17 Y. M. Kim, S. K. Kim, Y. J. Lim, N. J. Kim, Effect of microstructure on the yield ratio and low temperature toughness of linepipe steels, ISIJ International, 42(12), 1571(2002)
doi: 10.2355/isijinternational.42.1571
18 LIU Jianbing, XIONG Xiangjiang, XIA Zhenghai, Wu Qingming, CHEN Qiming, LI Zhongping, Effects of thermo-mechanical control process on microstructure and mechanical properties of X80 grade high-strain line pipe steel, Heat Treatment of Metals, 35(12), 55(2010)
18 (刘建兵, 熊祥江, 夏政海, 吴清明, 陈奇明, 李中平, 控轧控冷工艺对 X80 级抗大变形管线钢组织与性能的影响, 金属热处理, 35(12), 55(2010))
19 D. Das, P. P. Chattopadhyay, Influence of martensite morphology on the work-hardening behavior of high strength ferrite-martensite dual-phase steel, Journal of Materials Science, 44(11), 2957(2009)
doi: 10.1007/s10853-009-3392-0
20 H. Paruz, D. V. Edmonds, The strain hardening behaviour of dual-phase steel, Materials Science and Engineering A, 117, 67(1989)
doi: 10.1016/0921-5093(89)90087-7
21 J. Lian, Z. Jiang, J. Liu, Theoretical model for the tensile work hardening behaviour of dual-phase steel, Materials Science and Engineering A, 147(1), 55(1991)
doi: 10.1016/0921-5093(91)90804-V
22 R. E.Reed-Hill, W. R. Cribb, S. N. Monteiro, Concerning the analysis of tensile stress-strain data using log dσ/dεp versus log σ diagrams, Metallurgical Transactions, 4(11), 2665(1973)
23 Y. Tomita, K. Okabayashi, Mechanical properties of 0.40 pct C-Ni-Cr-Mo high strength steel having a mixed structure of martensite and bainite, Metallurgical Transactions A, 16(1), 73(1985)
24 F. H. Samuel, Tensile stress-strain analysis of dual-phase structures in an Mn-Cr-Si steel, Materials Science and Engineering, 92, L1(1987)
25 Y. Tomita, K. Okabayashi, Tensile stress-strain analysis of cold worked metals and steels and dual-phase steels, Metallurgical Transactions A, 16(5), 865(1985)
doi: 10.1007/BF02814837
26 D. A. Korzekwa, D. K. Matlock, G. Krauss, Dislocation substructure as a function of strain in a dual-phase steel, Metallurgical Transactions A, 15(6), 1221(1984)
doi: 10.1007/BF02644716
27 H. P. Shen, T. C. Lei, J. Z. Liu, Microscopic deformation behaviour of martensitic-ferritic dual-phase steels, Materials Science and Technology, 2(1), 28(1986)
doi: 10.1179/026708386790123576
28 S. R. Mediratta, V. Ramaswamy, V. Singh, P. Ramarao, Dependence of strain hardening exponent on the volume fraction and carbon content of martensite in dual phase steels during multistage work hardening, Journal of Materials Science Letters, 9(2), 205(1990)
29 P. Antoine, S. Vandeputte, J. B. Vogt, Effect of microstructure on strain-hardening behaviour of a Ti-IF steel grade, ISIJ International, 45(3), 399(2005)
doi: 10.2355/isijinternational.45.399
30 SHA Guiying, HAN Enhou, XU Yongbo, ZHANG Xiuli, LIU Lu, Dynamic stress-strain behavior for acicular ferrite steel, Chinese Journal of Materials Research, 19(6), 561(2005)
30 (沙桂英, 韩恩厚, 徐永波, 张修丽, 刘路, 针状铁素体钢的动态应力-应变行为, 材料研究学报, 19(6), 561(2005))
31 American Petroleum Institute, Specification for Line Pipe, API Specification 5L forty-fifth edition (2012)
32 HAO Ladi, YU Huadong, Standard deviation and standard error of arithmetic mean, Acta Editologica, 17(2), 116(2005)
32 (郝拉娣, 于化东, 标准差与标准误, 编辑学报, 17(2), 116(2005))
doi: 10.3969/j.issn.1001-4314.2005.02.017
33 FAN Xuehua, LI Xiangyang, DONG Lei, SUN Lu, LU Xuetong, SU Deguang, Progress in research and application of pipeline steels with high deformation resistance in China, Oil and Gas Storage and Transportation, 34(3), 237(2015)
33 (樊学华, 李向阳, 董磊, 孙璐, 陆学同, 苏德光, 国内抗大变形管线钢研究及应用进展, 油气储运, 34(3), 237(2015))
34 CHEN Xiaowei, FU Yanhong, WANG Xu, XIONG Xiangjiang, WANG Dongchao, Development of X70 SAWL pipe with large deformation resistance, Weld Pipe and Tube, 35(3), 71(2012)
34 (陈小伟, 付彦宏, 王旭, 熊祥江, 王东超, X70 抗大变形直缝埋弧焊管的开发, 焊管, 35(3), 71(2012))
doi: 10.3969/j.issn.1001-3938.2012.03.014
35 Pipeline Construction Administration Department of PetroChina Company Limited, Supplementary technical specification of high strain LSAW line pipe for the second west-east natural gas transmission pipeline project, Q/SY GJX0135(2008)(enterprise standard of CNPC Pipeline Construction Administration Department)
35 (中国石油天然气股份有限公司管道建设项目经理部, 西气东输二线管道工程基于应变设计地区使用的直缝埋弧焊管补充技术条件, Q/SY GJX0135 (2008) (中国石油管道建设项目经理部企业标准)
36 JI Lingkang, LI Helin, CHEN Hongyuan, ZHAO Wenzhen, Analysis of local buckling strain of line pipe, Chinese Journal of Applied Mechanics, 29(6), 758(2012)
36 (吉玲康, 李鹤林, 陈宏远, 赵文轸, 管线钢管局部屈曲应变分析与计算, 应用力学学报, 29(6), 758(2012))
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.