Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (6): 418-426    DOI: 10.11901/1005.3093.2015.599
  研究论文 本期目录 | 过刊浏览 |
细粒径SiO2基棕榈醇-棕榈酸-月桂酸微胶囊相变调湿材料的制备与性能*
张浩(), 黄新杰, 宗志芳, 刘秀玉
安徽工业大学建筑工程学院 马鞍山 243032
Preparation and Properties of SiO2 Based Hexadecanol-Palmitic Acid-Lauric Acid Microencapsulated Phase Change and Humidity Controlling Materials with Fine Particle Size
ZHANG Hao**(), HUANG Xinjie, ZONG Zhifang, LIU Xiuyu
School of Civil Engineering and Architecture, Anhui University of Technology, Ma’anshan 243032, China
引用本文:

张浩, 黄新杰, 宗志芳, 刘秀玉. 细粒径SiO2基棕榈醇-棕榈酸-月桂酸微胶囊相变调湿材料的制备与性能*[J]. 材料研究学报, 2016, 30(6): 418-426.
Hao ZHANG, Xinjie HUANG, Zhifang ZONG, Xiuyu LIU. Preparation and Properties of SiO2 Based Hexadecanol-Palmitic Acid-Lauric Acid Microencapsulated Phase Change and Humidity Controlling Materials with Fine Particle Size[J]. Chinese Journal of Materials Research, 2016, 30(6): 418-426.

全文: PDF(684 KB)   HTML
摘要: 

采用硅烷偶联剂, 通过溶胶-凝胶法制备以SiO2为壁材、棕榈醇-棕榈酸-月桂酸为芯材的细粒径SiO2基棕榈醇-棕榈酸-月桂酸微胶囊相变调湿材料。采用等温吸放湿法、步冷曲线法、激光粒度分析仪(LPSA)、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)和差示扫描量热(DSC)分析表征了SiO2基棕榈醇-棕榈酸-月桂酸微胶囊相变调湿材料的调湿性能、调温性能、粒度分布、组成结构、表面形貌和热性能。结果表明, 去离子水用量、无水乙醇用量、硅烷偶联剂用量和棕榈醇-棕榈酸-月桂酸用量对SiO2基棕榈醇-棕榈酸-月桂酸微胶囊相变调湿材料有重要的影响。当去离子水与正硅酸乙酯的物质的量比为9、无水乙醇与正硅酸乙酯的物质的量比为5、棕榈醇-棕榈酸-月桂酸与正硅酸乙酯的物质的量比为0.5和硅烷偶联剂与正硅酸乙酯的物质的量比为0.1时, SiO2基棕榈醇-棕榈酸-月桂酸微胶囊相变调湿材料呈球形且表面光滑紧凑, 尺寸仅为1680.60~1735.35 nm, 粒径分布均匀, 分散性较好, 具有良好的相变储湿性能。

关键词 复合材料棕榈醇-棕榈酸-月桂酸SiO2相变调湿细粒径微胶囊    
Abstract

Microcapsules of phase change- and humidity-controlling material were synthesized by sol-gel method with hexadecanol-palmitic acid-lauric acid as core, SiO2 as shell and silaneas coupling agent. Then their performance of humidity controlling and temperature controlling, particle size distribution, composition and structure, surface morphology and thermal properties were characterized by isothermal sorption method, cooling curve measurement, laser particle analyzer (LPSA), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC) respectively. The results show that the amount of deionizedwater, absolute alcohol, hexadecanol-palmitic acid-lauric acid and silane coupling agent had great effect on the properties of the prepared phase change- and humidity-controlling materials. The phase change- and humidity-controlling material of good performance as spherical particles with smooth surface, homogeneous size distribution in a range of 1680.60~1735.35 nm and excellent dispersibility may be synthesized by the following optimal processing parameters: the mole ratio of deionized water totetraethyl orthosilicateis 9, the mole ratio of absolute alcohol totetraethyl orthosilicate 5, the mole ratio of hexadecanol-palmitic acid-lauric acid to tetraethyl orthosilicate 0.5, and the mole ratio of silane coupling agent totetraethyl orthosilicate 0.1.

Key wordscomposite materials    hexadecanol-palmitic acid-lauric acid    SiO2    phase change and humidity controlling    fine particle size    microencapsulates
收稿日期: 2015-10-22     
ZTFLH:  TU522.1  
基金资助:* 国家自然科学基金资助项目51206002
作者简介: 本文联系人: 张 浩
Sample Mole ratio between deionizedwater and tetraethyl orthosilicate Mole ratio between absolute alcohol and tetraethyl orthosilicate Mole ratio between hexadecanol-palmitic acid-lauric acid and tetraethyl orthosilicate Mole ratio between silane coupling agent and tetraethyl orthosilicate
1 7 5 0.5 0.10
2 9 5 0.5 0.10
3 11 5 0.5 0.10
4 9 3 0.5 0.10
5 9 7 0.5 0.10
6 9 5 0.5 0.00
7 9 5 0.5 0.05
8 9 5 0.5 0.15
9 9 5 0.2 0.10
10 9 5 0.8 0.10
表1  SiO2基棕榈醇-棕榈酸-月桂酸微胶囊相变调湿材料的配方
图1  样品1(A), 样品2(B)和样品3(C)的LPSA图
图2  样品4(A), 样品2(B)和样品5(C)的LPSA图
图3  样品6(A), 样品7(B), 样品2(C)和样品8(D)的形貌SEM像
图4  改性SiO2(A), 棕榈醇-棕榈酸-月桂酸(B), 样品9(C), 样品2(D)和样品10(E)的FT-IR图
图5  样品9(A), 样品2(B), 样品10(C)和样品6(D)的平衡含湿量
图6  各试样的步冷曲线
Sample Phase change temperature (℃) Phase transition enthalpy (J/g) hexadecanol-palmitic acid-lauric acid
content (%)
Pure hexadecanol-palmitic acid-lauric acid 22.79~28.18 173.36~178.72 100
2 21.89~27.75 92.03~97.96 53.1~54.8
6 21.54~27.24 86.78~90.45 50.1~50.6
9 22.13~27.58 30.62~32.28 17.7~18.1
10 22.27~28.06 141.46~150.33 81.6~84.1
表2  SiO2基棕榈醇-棕榈酸-月桂酸微胶囊相变调湿材料的热性能
Relativehumidity
(%)
Equilibrium moisture content (g/g) Descent rate
(%)
Without cycling After 500 cycling
Adsorbing moisture process Desorption moisture process Adsorbing moisture process Desorption moisture process Adsorbing moisture process Desorption moisture process
32.78 0.0895 0.0993 0.0813 0.0898 9.16 9.57
43.16 0.1100 0.1225 0.1020 0.1182 7.27 3.51
52.89 0.1203 0.1345 0.1089 0.1251 9.48 6.99
64.92 0.1296 0.1424 0.1174 0.1316 9.41 7.58
75.29 0.1486 0.1586 0.1347 0.1474 9.35 7.06
84.34 0.1769 0.1830 0.1621 0.1697 8.37 7.27
97.30 0.2145 0.2150 0.1990 0.2035 7.23 5.35
表3  样品2的平衡含湿量
图7  样品2的步冷曲线
1 A. Sharma, V. V. Tyagi, C. R. Chen, Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, 13(2), 318(2009)
doi: 10.1016/j.rser.2007.10.005
2 S. H. Lee, S. J. Yoon, Y. G. Kim, J. G. Lee, The utilization of micro- encapsulated phase change material wallboards for energy saving, Korean Journal of Chemical Engineering, 28(11), 2206(2011)
doi: 10.1007/s11814-011-0099-0
3 F. He, X. D. Wang, D. Z. Wu, New approach for sol-gel synthesis of microencapsulated n-octadecane phase change material with silica wall using sodium silicate precursor , Energy, 67, 223(2014)
4 B. X. Li, T. X. Liu, L. Y. Hu, L. N. Gao, Fabrication and properties of microencapsulated paraffin@SiO2 phase change composite for thermal energy storage, ACS Sustainable Chemistry & Energy, 1(3), 374(2013)
doi: 10.1021/sc300082m
5 C. M. Chen, Z. H. Chen, X. R. Zeng, X. M. Fang, Z. G. Zhang, Z. H. Chen, Fabrication and characterization of nanocapsules containing n-dodecanol by miniemulsion polymerization using interfacial redox initiation, Colloid & Polymer Science, 290(4), 307(2012)
6 M. Hunger, A. G. Entrop, I. Mandilaras, H. J. H.Brouwers, M. Founti, The behavior of self-compacting concrete containing micro-encapsulated phase change materials, Cement & Concrete Composites, 31(10), 731(2009)
7 G. Y. Fang, Z. Chen, H. Li, Synthesis and properties of microencapsulated paraffin composites with SiO2 shell as thermal energy storage materials, Chemical Engineering Journal, 163(1-2), 154(2010)
doi: 10.1016/j.cej.2010.07.054
8 MENG Duo, WANG Lijiu, Preparation and thermal properties of fatty acid/inorganic nano-particle form-stable phase change material, Journal of Building Materials, 16(1), 91(2013)
8 (孟多, 王立久, 脂肪酸/无机纳米颗粒基定形相变材料的制备与热性能, 建筑材料学报, 16(1), 91(2013))
doi: 10.3969/j.issn.1007-9629.2013.01.017
9 SHANG Jianli, LI Qianming, WANG Zhengjun, Preparation and thermal performance tests of microencapsulated gypsum-based phase change building material, Acta Energiae Solaris Sinica, 33(12), 2140(2012)
9 (尚建丽, 李乔明, 王争军, 微胶囊相变储能石膏基建筑材料制备及性能研究, 太阳能学报, 33(12), 2140(2012))
10 A. M. Borreguero, M. Carmona, M. L. Sanchez, L. V. José, F. R. Juan, Improvement of the thermal behaviour of gypsum blocks by the incorporation of microcapsules containing PCMS obtained by suspension polymerization with an optimal core/coating mass ratio, Applied Thermal Engineering, 30(10), 1164(2010)
doi: 10.1016/j.applthermaleng.2010.01.032
11 SHANG Jianli, WANG Si, DONG Li, Prepared of PAR/POL/SOD-composite-wall microencapsulated and research of energy storage and humidity-control performance, Journal of Functional Materials, 44(8), 1141(2013)
11 (尚建丽, 王思, 董莉, PAR/POL/SOD复合微胶囊的制备及热湿性能研究, 功能材料, 44(8), 1(2013))
doi: 10.3969/j.issn.1001-9731.2013.08.019
12 ZHANG Hao, HUANG Kai, HUANG Xinjie, Study on degradation effect of Ce-TiO2photocatalyst coating on formaldehyde solution and its prediction model, Chinese Rare Earths, 35(4), 18(2014)
12 (张浩, 黄凯, 黄新杰, Ce-TiO2光催化涂料降解甲醛溶液的性能研究及预测模型, 稀土, 35(4), 18(2014))
13 SHANG Jianli, ZHANG Hao, XIONG lei, MA Xianglong, Preparation and texture of phase change materials of fatty acid/SiO2 composite, Chinese Journal of Material Research, 29(10), 757(2015)
13 (尚建丽, 张浩, 熊磊, 麻向龙, 脂肪酸/SiO2复合相变材料的制备及其对织构的影响因素, 材料研究学报, 29(10), 757(2015))
14 ZHANG Hao, HUANG Xinjie, LIU Xiuyu, TANG Gang, Optimization for preparation of phase change and humidity control composite materials of hexadecanol-palmitic acid-lauric acid/SiO2, Chinese Journal of Material Research, 29(9), 671(2015)
14 (张浩, 黄新杰, 刘秀玉, 唐刚, 优化制备棕榈醇-棕榈酸-月桂酸/SiO2复合相变调湿材料, 材料研究学报, 29(9), 671(2015))
15 HUANG Zishuo, YU Hang, ZHANG Meiling, Humidity-control materials and their humidity absorption and desorpttion rate variation, Journal of Tongji University(Natural Science), 42(2), 310(2014)
15 (黄子硕, 于航, 张美玲, 建筑调湿材料吸放湿速度变化规律, 同济大学学报(自然科学版), 42(2), 310(2014))
doi: 10.3969/j.issn.0253-374x.2014.02.023
16 YU Yongsheng, JING Qiangshan, SONG Fangfang, Study on the ternary phase change system of H/PA/LA, Journal of Building Materials, 16(1), 97(2013)
16 (于永生, 井强山, 宋方方, 十六醇/十六酸/十二酸三元复合相变体系研究, 建筑材料学报, 16(1), 97(2013))
doi: 10.3969/j.issn.1007-9629.2013.01.018
17 S. Pal, M. R. Hajj, W. P. Wong, I. K. Puri, Thermal energy storage in porous materials with adsorption and desorption of moisture, International Journal of Heat and Mass Transfer, 69, 285(2014)
doi: 10.1016/j.ijheatmasstransfer.2013.10.023
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[6] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[7] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[8] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[9] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[10] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[11] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[12] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[13] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.