Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (2): 95-98    DOI: 10.11901/1005.3093.2015.343
  本期目录 | 过刊浏览 |
Dy2O3掺杂对机械球磨Nd2Fe14B/α-Fe复合磁体矫顽力的影响*
李迎飞, 田娜(), 范晓东, 游才印
西安理工大学材料科学与工程学院 西安 710048
Influence of Dy2O3 Doping on Coercivity of Mechanically Milled Nd2Fe14B/α-Fe Composite Magnets
LI Yingfei, TIAN Na**(), FAN Xiaodong, YOU Caiyin
(School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China)
引用本文:

李迎飞, 田娜, 范晓东, 游才印. Dy2O3掺杂对机械球磨Nd2Fe14B/α-Fe复合磁体矫顽力的影响*[J]. 材料研究学报, 2016, 30(2): 95-98.
Yingfei LI, Na TIAN, Xiaodong FAN, Caiyin YOU. Influence of Dy2O3 Doping on Coercivity of Mechanically Milled Nd2Fe14B/α-Fe Composite Magnets[J]. Chinese Journal of Materials Research, 2016, 30(2): 95-98.

全文: PDF(808 KB)   HTML
摘要: 

用机械球磨法制备Nd2Fe14B/α-Fe复合磁体, 研究了Dy2O3掺杂对纳米复合磁体磁性能的影响.结果表明, 掺入Dy2O3能显著提高复合磁体的矫顽力, 且随着Dy2O3掺杂量的增大最大矫顽力对应的退火温度降低.X射线衍射分析结果表明, 掺入Dy2O3使Nd2Fe14B的晶格常数减小, 也即Dy部分替代Nd后生成了(Nd, Dy)2Fe14B硬磁相.因此, 复合磁体矫顽力的增强主要归因于硬磁相磁晶各向异性的提高.但是, 硬磁相磁晶各向异性的提高缩短了有效交换耦合长度, 表现为过量掺杂Dy2O3使矫顽力降低.

关键词 金属材料Nd2Fe14B/α-FeDy2O3掺杂矫顽力交换耦合    
Abstract

Nd2Fe14B/α-Fe composite magnets were fabricated by mechanically ball milling. The influence of Dy2O3 doping on the coercivity of the nanocomposite magnets was studied in detail. It was found that the coercivity of the composite magnets can be significantly improved by Dy2O3 doping, and the annealing temperature corresponding to the maximum coercivity decreases with the increase of Dy2O3 content. X-ray diffraction analysis shows that the lattice parameters of Nd2Fe14B decreased due to Dy2O3 doping, indicating that (Nd, Dy)2Fe14B hard magnetic phase formed after Dy partial replacement for Nd. Therefore, the enhancement of coercivity of the magnets can be mainly attributed to the increase of the magnetic crystalline anisotropy of the hard magnetic phase. However, with the increase of the magnetic crystalline anisotropy, the effective exchange coupling length was shortened, thereby, the coercivity dropped due to over doping of Dy2O3.

Key wordsmetal material    Nd2Fe14B/α    -Fe composite magnet    Dy2O3 doping    coercivity    exchange coupling
收稿日期: 2015-06-12     
ZTFLH:  O482  
基金资助:* 国家自然科学基金 51301129, 51171148, 51371140,霍英东基金 131103,陕西省自然科学基金 2013JQ6008,陕西省电工材料与熔渗技术创新团队计划 2012KCT-25资助项目
图1  不同Dy2O3掺杂量的复合磁体973 K退火后的XRD图谱
x /% a /nm c /nm Vcell /nm3
0 0.8779 1.2176 0.9383
1 0.8782 1.2165 0.9382
3 0.8719 1.2140 0.9230
5 0.8697 1.2098 0.9152
7 0.8727 1.2088 0.9206
表1  掺杂不同量Dy2O3 的复合磁体973 K 退火后的晶格常数
图2  不同Dy2O3掺杂量的复合磁体的室温矫顽力与退火温度的关系
图3  不同Dy2O3掺杂量的复合磁体973 K退火后的磁滞回线
图4  不同Dy2O3掺杂量的复合磁体退火后的矫顽力与测量温度的关系, 内插图为在70 K和300 K测得的矫顽力与Dy2O3掺杂量的关系
1 ZHOU Shouzeng, DONG Qingfei,Super Strong Permanent Magnet-Rare Earth Iron Based Permanent Magnetic Material, ( Beijing, Metallurgical Industry Press, 1999)p.9-12
1 (周寿增, 董清飞, 超强永磁体--稀土铁系永磁材料, (北京: 冶金工业出版社, 1999)p.9-12)
2 R. Skomski, J. M. D.Coey, Giant energy product in nanostructured two-phase magnets, Phys. Rev. B, 48, 15812(1993)
3 M. Marinescu, H. Chiriac, M. Grigoras, Magnetic properties of bulk nanocomposite permanent magnets based on NdDyFeB alloys with additions, J. Magn. Magn. Mater., 290-291, 1267(2005)
4 J. Li, Y. Liu, Y.L. Ma, Effect of niobium on microstructure and magnetic properties of bulk anisotropic NdFeB/α-Fe nanocomposites, J. Magn. Magn. Mater., 324, 2292(2012)
5 W. S. Zha, J. Y. Liu, T. X. Song, Z. Y. Wang, Differences of element distribution between free and wheel side surface of NdFeB/α-Fe ribbons, J. Rare Earths, 29(1), 94(2011)
6 Y. P. Wang, C. Y. You, J. W. Wang, N. Tian, Z. X. Lu, L. L. Ge, Coercivity enhancement of Nd2Fe14B/α-Fe nanocomposite magnets through neodymium diffusion under annealing, J. Rare Earths, 30(8), 757(2012)
7 X. D. Fan, N. Tian, C. Y. You, Influence of Nd Doping on the Magnetic Properties of Nd2Fe14B/α-Fe Nanocomposite Magnets, Mater. Sci. Forum, 809-810, 88(2015)
8 Z. W. Liu, D. Y. Qian, L. Z. Zhao, Z. G. Zheng, X. X. Gao, R. V. Ramanujan,Enhancing the coercivity, thermal stability and exchange coupling of nano-composite (Nd, Dy, Y)-Fe-B alloys with reduced Dy content by Zr addition, J. Alloys Compd., 606, 44(2014)
9 K. Löewe, C. Brombacher, M. Katter, O. Gutfleisch, Temperature-dependent Dy diffusion processes in Nd-Fe-B permanent Magnets, Acta Matell., 83, 248(2015)
10 W. F. Li, H. Sepehri-Amin, T. Ohkubo, N. Hase, K. Hono,Distribution of Dy in high-coercivity (Nd, Dy)-Fe-B sintered magnet, Acta Matell., 59, 3061(2011)
11 W. Q. Liu, H. Sun, X. F. Yi, X. C. Liu, D. T. Zhang, M. Yue, J. X. Zhang, Coercivity enhancement in Nd-Fe-B sintered permanent magnet by Dy nanoparticles doping, J. Alloys Compd., 501, 67(2010)
12 F. Xu, J. Wang, X. P. Dong, L. T. Zhang, J. S. Wu, Grain boundary microstructure in DyF3-diffusion processed Nd-Fe-B sintered magnets, J. Alloys Compd., 509, 7909(2011)
13 X. G. Cui, C. Y. Cui, X. N. Cheng, X. J. Xu, Effect of Dy2O3 intergranular addition on thermal stability and corrosion resistance of Nd-Fe-B magnets, Intermetallics, 55, 118(2014)
14 M. Komuro, Y. Satsu, Y. Enomoto, H. Koharagi, High electrical resistance hot-pressed NdFeB magnet for low loss motors, Appl. Phys. Lett., 91, 102503(2007)
15 C. Y. You, X. K. Sun, L. Y. Xiong, W. Liu, B. Z. Cui, X. G. Zhao, D. Y. Geng, Z. D. Zhang, Effects of the precursor ingot for Nd2Fe14B/α-Fe nanocomposite magnets prepared by mechanical milling, J. Magn. Magn. Mater., 268, 403(2004)
16 X. B. Liu, Z. Altounian, The partitioning of Dy and Tb in NdFeB magnets: A first-principles study,J. Appl. Phys., 111, 07A701(2012)
17 M. J. Kim, Y. B. Kim, C. S. Kim, T. K. Kim,Spin reorientation and magnetocrystalline anisotropy of (Nd1-xDyx)2 Fe14B, J. Magn. Magn. Mater., 224, 49(2001)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.