Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (2): 87-94    DOI: 10.11901/1005.3093.2015.022
  本期目录 | 过刊浏览 |
挤压温度对Al-Zn-Mg合金力学性能的影响*
邓运来1,2(), 王亚风1,2, 林化强1,3, 叶凌英1,2, 刘胜胆1,2, 谭谦1,2, 张新明1,2
1. 中南大学材料科学与工程学院 长沙 410083
2. 有色金属材料科学与工程教育部重点实验室 长沙 410083
3. 青岛四方机车车辆股份有限公司国家高速动车组总成工程技术研究中心 青岛 266000
Effect of Extrusion Temperature on Strength and Fracture Toughness of an Al-Zn-Mg Alloy
DENG Yunlai1,2,**(), WANG Yafeng1,2, LIN Huaqiang1,3, YE Lingying1,2, LIU Shengdan1,2, TAN Qian1,2, ZHANG Xinming1,2
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China
2. The Key Laboratory of Nonferrous Materials Science and Engineering of Ministry of Education, Central South University, Changsha 410083, China
3. National Engineering Research Center for High-speed EMU, CSR Qingdao Sifang Co., Ltd., Qingdao 266111, China
引用本文:

邓运来, 王亚风, 林化强, 叶凌英, 刘胜胆, 谭谦, 张新明. 挤压温度对Al-Zn-Mg合金力学性能的影响*[J]. 材料研究学报, 2016, 30(2): 87-94.
Yunlai DENG, Yafeng WANG, Huaqiang LIN, Lingying YE, Shengdan LIU, Qian TAN, Xinming ZHANG. Effect of Extrusion Temperature on Strength and Fracture Toughness of an Al-Zn-Mg Alloy[J]. Chinese Journal of Materials Research, 2016, 30(2): 87-94.

全文: PDF(10001 KB)   HTML
摘要: 

用光学显微镜,扫描电镜,透射电镜,常温拉伸以及Kahn撕裂实验等手段, 研究了挤压温度对Al-Zn-Mg合金型材表层和中心层强度和断裂韧性的影响.结果表明: 挤压型材表层以细小等轴的再结晶晶粒为主, 中心层为发生部分再结晶的纤维组织, 沿挤压方向中心层强度高于表层, L-T取向的断裂韧性表层高于中心层.挤压温度由440-450℃时升高至480-490℃时动态再结晶程度升高, 强度升高, 而断裂韧性降低; 时效后晶内析出相更细小, 晶界析出相粗化,不连续, 中心层的再结晶分数由14.8%升高至52.3%, 屈服强度也从280 MPa升至314 MPa, 而UIE由229 Nmm-1降低至204 Nmm-1.

关键词 金属材料挤压温度Al-Zn-Mg合金强度断裂韧性    
Abstract

The effect of extrusion temperature on the tensile properties and fracture toughness of an Al-Zn-Mg alloy was investigated by optical microscopy, scanning electron microscopy, transmission electron microscopy, tensile tests and Kahn tear tests. The results showed that after extrusion the alloy possesses a surface layer composed of fine equiaxed grains with higher toughness in the L-T orientation than that of its center layer, which composed of fiber-like texture and recrystallized grains, while the tensile strength of the center layer is higher than that of the surface layer. When the extrusion temperature increases from 440-450℃ to 480-490℃, the dynamic recrystallization becomes more serious, and the tensile properties and fracture toughness become lower and higher respectively. After aging the precipitates in grains become smaller and the precipitates at grain boundaries are coarsening and discontinuous. Taking the central layer for example, the volume fraction of recrystallized grains increases from 14.8% to 52.3%, correspondingly σ0.2 increases from 280 MPa to 314 MPa, while UIE decrease from 229 Nmm-1 to 204 Nmm-1.

Key wordsmetallic materials    extrusion temperature    Al-Zn-Mg alloy    tensile properties    fracture toughness
收稿日期: 2015-01-13     
ZTFLH:  TG146  
基金资助:* 国家重点基础研究发展计划2012CB619500资助项目
作者简介: 通讯作者:邓运来, 教授
T1 /℃ T2 /℃ T3 /℃ V /mmin-1
A 440-450 430 440 2
B 480-490 470 480 2
表1  Al-Zn-Mg合金挤压工艺参数
T/℃ σb/MPa σ0.2/MPa δ/% UIE/Nmm-1
440-450 SL 332 265 10.6 250
CL 346 280 8.6 229
480-490 SL 356 300 9.7 228
CL 371 314 9.1 204
表2  Al-Zn-Mg合金力学性能
图1  挤压温度不同的Al-Zn-Mg合金表层和中心层的金相组织
图2  挤压温度不同的Al-Zn-Mg合金表层和中心层的EBSD
图3  挤压温度不同的Al-Zn-Mg合金表层和中心层晶界角度统计图
图4  在不同温度挤压后Al-Zn-Mg合金的SEM照片
Point %
Al Zn Mg Fe Si Cr Mn
A 92.96 1.39 2.11 1.58 0.92 0.22 0.82
B 93.97 3.07 2.97
表4  Al-Zn-Mg合金第二相能谱分析结果
T/℃ Conductivity /%IACS
440-450 32.9
480-490 32.3
表5  不同挤压温度下Al-Zn-Mg合金电导率
图5  在不同温度挤压的Al-Zn-Mg合金断裂韧性样品断口的SEM像
图6  在440-450℃挤压的Al-Zn-Mg合金表层和中心层的TEM像及电子衍射花样
图7  在480-490℃挤压的Al-Zn-Mg合金表层和中心层的TEM像及电子衍射花样
1 D. Marchive, P. Faivre, Medium-strength extrusion alloysin the 6000 series (partⅡ), Light Metal Age, 41(6), 14(1983)
2 SHI Feng, WANG Yu, YE Pengfei, LIU Liying, Effect of aging system on properties of A7N01 aluminum profiles for rail body, Aluminum Fabrication, 196(5), 29(2010)
2 (石峰, 王煜, 叶朋飞, 刘丽英, 时效制度对A7N01铝合金车体型材性能的影响, 铝加工, 196(5), 29(2010))
3 ZHANG Zhanling, QIU Ranfeng, DU Yile, LI Chenyang, HENG Zhonghao, Aluminum alloy applications and its welding technique for railway vehicle in Japan, Electric Welding Machine, 41(11), 11(2011)
3 (张占领, 邱然锋, 杜宜乐, 李臣阳, 衡中皓, 铝合金在日本轨道车辆的应用及相应焊接技术, 电焊机, 41(11), 11(2011))
4 WANG Zhenan, WANG Mingpu, LI Zhou, YANG Wenchao, XIAO Congwen, Heat treatment characteristic of 7005 Al alloy employed in railway train, The Chinese Journal of Nonferrous Metals, 20(6), 1110(2010)
4 (王正安, 汪明朴, 李周, 杨文超, 肖从文, 轨道交通车辆大型用7005铝合金的热处理特性, 中国有色金属学报, 20(6), 1110(2010))
5 D. W. Suh, S. Y. Lee, K. H. Lee, S. K. Lim, K. H. Oh, Microstructural evolution of Al-Zn-Mg-Cu-(Sc) alloy during hot extrusion and heat treatments, Journal of Materials Processing Technology, 155, 1330(2004)
6 T. S. Shih, Q. Y. Chung, Fatigue of as-extruded 7005 aluminum alloy, Materials Science and Engineering A, 348, 333(2003)
7 M. Chemingui, M. Khitouni, G. Mesmacque, A. W. Kolsi, Effect of heat treatment on plasticity of Al-Zn-Mg alloy: Microstructure evolution and mechanical properties, Physics Procedia, 2, 1167(2009)
8 G. Z. Quan, Y. P. Mao, G. S. Li, W. Q. Lv, Y. wang, J. Zhou, A characterization for the dynamic recrystallization kinetics of as-extruded 7075 aluminum alloy based on true stress-strain curves, Computational Materials Science, 55, 65(2012)
9 GUO Hailong, SUN Zhichao, YANG He, Empirical recrystallization model and its application of as-extrudedaluminum alloy 7075, The Chinese Journal of Nonferrous Metals, 23(6), 107(2013)
9 (郭海龙, 孙志超, 杨合, 挤压态7075铝合金再结晶经验模型及应用, 中国有色金属学报, 23(6), 107(2013))
10 DENG Bo, ZHONG Yi, QI Xianrong, ZHONG Huarong, ZHANG Jiatao, Experiment on high speed reverse-extrusion of 7N01 aluminum alloy, Yunnan Metallugy, 35(6), 50(2006)
10 (邓波, 钟毅, 起华荣, 钟华荣, 张家涛, 7N01铝合金高速反向挤压实验研究, 云南冶金, 35(6), 50(2006))
11 Fan Xigang, Study on the microstructures and mechanical properties and the fracture behavior of the Al-Zn-Mg-Cu-Zr alloys, Doctor's Thesis,Harbin Institute of Technology, (2007)
11 (樊喜刚, Al-Zn-Mg-Cu-Zr合金组织性能和断裂行为的研究, 博士学位论文,哈尔滨工业大学(2007))
12 YAN Liangmin, WANG Zhiqian, SHEN Jian, LI Zhoubing, LI Junpeng, MAO baiping, Research status and expectation of 7055 aluminium alloy, Materials Review, 23(9), 69(2009)
12 (闫亮明, 王志强, 沈健, 李周兵, 李俊鹏, 毛柏平, 7055铝合金的研究现状及展望, 材料导报, 23(9), 69(2009))
13 C. Mahmoud, K. Mohamed, K. Jozwiak, G. Mesmacque, A. Kolsi, Characterization of the mechanical properties changes in an Al-Zn-Mg alloy after a two-step ageing treatment at 70º and 135º, Materials and Desigh, 31, 3134(2010)
14 Dumont D, Deschamps A, Brechet Y, On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy, Materials Science and Engineering: A, 356(1-2), 326(2003)
15 Zhang Shenghua, Qin Yexia, Study on the coarse-grain forming mechanisms in extruded aluminium alloy products, Aluminum Fabrication, 24(2), 29(2001)
15 (张胜华, 覃业霞, 铝合金挤压制品粗晶环形成机理研究, 铝加工, 24(2), 29(2001))
16 A. Deschamps, G. Texier, S. Ringeval, L. delfaut-Durut, Influence of cooling rate on the precipitation microstructure in a medium strength Al-Zn-Mg alloy, Materials Science and Engineering: A, 501(1-2), 133(2009)
17 Gür C H, Yıldız İ, Non-destructive investigation on the effect of precipitation hardening on impact toughness of 7020 Al-Zn-Mg alloy, Materials Science and Engineering: A, 382(1-2), 395(2004)
18 T. Ogura, T. Otani, A. Hirose, T. sato, Improvement of strength and ductility of an Al-Zn-Mg alloy by controlling grain size and precipitate microstructure with Mn and Ag addition, Materials Science and Engineering: A, 580(0), 288(2013)
19 HAN Nianmei, ZHANG Xinming, LIU Shengdan, LU Yanhong, HE Daoguang, ZHANG Rong, Effects of interrupt aging on strength and fracture toughness of 7050 aluminum alloy, The Chinese Journal of Nonferrous Metals, 43(9), 3363(2012)
19 (韩念梅, 张新明, 刘胜胆, 陆艳红, 何道广, 张荣, 断续时效对7050铝合金强度和断裂韧性的影响, 中国有色金属学报, 43(9), 3363(2012))
20 Peters J O, Gysler A, Lutjring G, Influence of variable amplitude loading on fatigue crack propagation of Al 7475, Proceedings of 6th International Conference on Aluminum Alloys, ICAA6, Toyohashi, Japan, 1427-1432(1998)
21 Kim I B, Park Y S, Kim I G, Effects of silicon and chromium on the fatigue properties of Al-Zn-Mg-Cu cast alloy, Materials Science Forum, 449, 617(2004)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.