Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (1): 45-50    DOI: 10.11901/1005.3093.2015.028
  研究论文 本期目录 | 过刊浏览 |
高温渗碳制备防静电氧化锆陶瓷*
杨现锋1(), 徐协文1, 刘其城1, 谢志鹏2
1. 长沙理工大学物理与电子科学学院 长沙 410006
2. 清华大学新型陶瓷与精细工艺国家重点实验室 北京 100084
Preparation of Anti-satic Zirconia Ceramics by Carburization at High Temperature
YANG Xianfeng1,**(), XU Xiewen1, LIU Qicheng1, XIE Zhipeng2
1. College of physics and electronics science, Changsha university of science & technology, Changsha 410014, China
2. State Key Laboratory of New Ceramics and Fine Processing, College of Materials Science, Tsinghua University, Beijing 100084, China
引用本文:

杨现锋, 徐协文, 刘其城, 谢志鹏. 高温渗碳制备防静电氧化锆陶瓷*[J]. 材料研究学报, 2016, 30(1): 45-50.
Xianfeng YANG, Xiewen XU, Qicheng LIU, Zhipeng XIE. Preparation of Anti-satic Zirconia Ceramics by Carburization at High Temperature[J]. Chinese Journal of Materials Research, 2016, 30(1): 45-50.

全文: PDF(1925 KB)   HTML
摘要: 

用高温渗碳方法制备氧化锆陶瓷, 研究了渗碳温度和时间对表面电阻率和维氏硬度的影响。结果表明, 高温渗碳后在氧化锆陶瓷表面形成了改性层; 随着渗碳温度的提高和渗碳时间的延长表面电阻率下降, 维氏硬度升高。渗碳温度为1450℃、渗碳时间为3 h的氧化锆陶瓷, 其表面电阻率由1014 Ω/□低至107 Ω/□, 维氏硬度略有升高达到14 GPa。显微结构和组成分析结果表明, 在氧化锆陶瓷表面形成了约3 μm的改性层。结果证实, C元素的浓度从表面到内部逐渐降低, 在内部主要以单质形式存在, 在表层主要以单质C及ZrC0.85形式存在, 使其具有防静电性能。

关键词 无机非金属材料渗碳表面电阻率氧化锆    
Abstract

Anti-static zirconia ceramic with perfect mechanical properties was prepared by carburization treatment method. The influence of carburization temperature and time on the surface resistivity and Vickers hardness was investigated. It shows that after carburization the surface resistivity was decreased, while Vickers hardness was enhanced for the ZrO2 ceramics. After carburization at 1450℃ for 3 h, the surface resistivity of ZrO2 ceramic could be reduced to 107 Ω/□ and Vickers hardness could be enhanced slightly to 14 GPa; the surface modification layer was about 3 μm in thickness; and of which the carbon content deceased from the surface towards the inner. It was verified by XPS that carbon in the inner portion of carburization layer existed as elemental status, while on the surface layer as element C and carbide ZrC0.85, which might facilitate the anti-static property of the ZrO2 ceramics.

Key wordsinorganic non-metallic materials    anti-static    carburization    surface resistivity    zirconia
收稿日期: 2015-01-14     
基金资助:* 国家自然科学基金51102024资助项目
作者简介: 杨现锋
图1  渗碳温度和渗碳时间对表面电阻率的影响
图2  渗碳温度和渗碳时间对硬度的影响
图3  3Y-TZP陶瓷渗碳前和渗碳后SEM照片, 以及渗碳样品的EDS图谱和渗碳前后的XRD图谱
图4  3Y-TZP陶瓷处理前后的XPS全谱图
图5  3Y-TZP陶瓷处理前后C1s, O1s, Y3d, Zr3d XPS图谱
1 S. Z. Liu, W. Q. Yang, J. X. Lei, C. L. Zhou, Properties of nanoparticles filled soft poly (vinyl chloride) composites including antistatic plasticizer, Journal of Applied Polymer Science, 127(4), 3221(2013)
2 C. Fontanesi, C. Leonelli, T. Manfredini, Characterisation of the surface conductivity of glassy materials by means of impedance spectroscopy measurements, Journal of the European Ceramic Society, 18(11), 1593(1998)
3 H. Q. Liang, X. M. Yao, H. Deng, H. Zhang, X. J. Liu, Z. R. Huang, High electrical resistivity of spark plasma sintered SiC ceramics with Al2O3 and Er2O3 as sintering additives, Journal of the European Ceramic Society, 35(1), 399(2015)
4 E. Zschippang, H. Klemm, M. Herrmann, K. Sempf, U. Guth, A. Michaelis, Electrical resistivity of silicon nitride-silicon carbide based ternary composites, Journal of the European Ceramic Society, 32(1), 157(2012)
5 T. Q. Zhang, Y. J. Wang, Y. Zhou, G. M. Song, Electrical resistivity of silicon nitride-silicon carbide based ternary composites, International Journal of Refractory Metals and Hard Materials, 28(4), 498(2010)
6 N. Susumu, K. Shinichi, M. Yasuo, S. Toshihisa, Effect of ZnO additon on the electrical resistance of 2.6 mol%-Y2O3 stabilized zirconia ceramic, Journal of Materials Science, 41(5), 1631(2006)
7 D. H. Fan, Z. L. Xu, S. P. Li, Investigations of Iron Implanted in Zirconia, Journal of Nanjing University (Natural Science), 39(1), 76(2003)
8 S. Marinel, D. H. Choi, R. Heuguet, D. Agrawal, M. Lanagan, Broadband dielectric characterization of TiO2 ceramics sintered through microwave and conventional processes, Ceramic International, 39(1), 39(2013)
9 LI Yong, XIE Xiewen, YANG Xiangfeng, XIE Zhipeng, Preparation of antistatic ceramics employing Fe-infiltration in sintered zirconia body, Journal of Inorganic Materials, 29(10), 1099(2014)
9 (李勇, 徐协文, 杨现锋, 谢志鹏, Fe高温浸渗法制备防静电3Y-TZP 陶瓷及其性能研究, 无机材料学报, 29(10), 1099(2014))
10 MA Li, WANG Maoqiu, SHI Jie, HUI Weijun, DONG Han, Rolling contact fatigue of microalloying case carburized gear steels, Chinese Journal of Materials Research, 23(3), 251(2009)
10 (马莉, 王毛球, 时捷, 惠卫军, 董瀚, 微合金化渗碳齿轮钢的接触疲劳性能, 材料研究学报, 23(3), 251(2009))
11 WANG Daning, LIANG Kaiming, WAN Junlin, Carbon-containing zirconia ceramics, Journal of the Chinese Ceramic Society, 26(2), 230(1998)
11 (王大宁, 梁开明, 万菊林., 含碳的氧化锆陶瓷, 硅酸盐学报, 26(2), 230(1998))
12 JIANG Yao, HE Yuehui, TANG Yiwu, LI Zhi, HUANG Boyun, Behavior and mechanism of TiAl based alloy surface carburization, Chinese Journal of Materials Research, 19(2), 139(2005)
12 (江垚, 贺跃辉, 汤义武, 李智, 黄伯云, TiAl基合金的表面渗碳行为及其机理, 材料研究学报, 19(2), 139(2005))
13 P. Zhang, S. X. Li, Z. F. Zhang, General relationship between strength and hardness, Materials Science and Engineering A, 529(25), 62(2011)
14 X. G. Wang, W. M. Guo, Y. M. Kan, G. J. Zhang, Densification behavior and properties of hot-pressed ZrC ceramics with Zr and graphite additives, Journal of the European Ceramic Society, 31(6), 1103(2011)
15 Y. Long, A. Javed, J. Chen, Phase composition, microstructure and mechanical properties of ZrC coatings produced by chemical vapor deposition, Ceramics International, 40(1), 707(2014)
16 A. M. Chu, M. L. Qin, Rafi-ud-din, L. Zhang, H. F. Lu, B. R. Jia, X. H. Qu, Carbothermal synthesis of ZrC powders using a combustion synthesis precursor, International Journal of Refractory Metals and Hard Materials, 36(1), 204(2013)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.