Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (1): 38-44    DOI: 10.11901/1005.3093.2015.417
  研究论文 本期目录 | 过刊浏览 |
高Fe含量FeCuNbSiB系非晶/纳米晶合金制备及其磁性研究*
王葛1, 鲍金锋1, 王兴华2,3, 陈玉鹤1, 周富伟1, 李强1,3()
1. 燕山大学 国家冷轧板带装备及工艺工程技术研究中心 秦皇岛 066004
2. 天津大学材料科学与工程学院 天津 300072
3. 河北工业大学材料科学与工程学院 天津 300401
Preparation and Magnetic Properties of Amorphous- and Nanocrystalline-alloys of FeCuNbSiB with high Fe-content
WANG Ge1, BAO Jinfeng1, WANG Xinghua2,3, CHEN Yuhe1, ZHOU Fuwei1, LI Qiang1,3,**()
1. National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004, China
2. College of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
3. College of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China
引用本文:

王葛, 鲍金锋, 王兴华, 陈玉鹤, 周富伟, 李强. 高Fe含量FeCuNbSiB系非晶/纳米晶合金制备及其磁性研究*[J]. 材料研究学报, 2016, 30(1): 38-44.
Ge WANG, Jinfeng BAO, Xinghua WANG, Yuhe CHEN, Fuwei ZHOU, Qiang LI. Preparation and Magnetic Properties of Amorphous- and Nanocrystalline-alloys of FeCuNbSiB with high Fe-content[J]. Chinese Journal of Materials Research, 2016, 30(1): 38-44.

全文: PDF(1422 KB)   HTML
摘要: 

研究了过渡金属元素(Zr, Nb, Mo)和Cu元素对Fe78Si9B13合金系非晶形成能力、热稳定性和磁性的影响; 在Fe74Cu1Nb3Si13B9合金的基础上, 通过逐步提高Fe含量, 利用单辊甩带法制备Fe(76+x)Cu1Nb3Si(11-x)B9(x=0, 2, 4)和Fe(79+x)Cu1Nb2Si(6-x)B12(x=0, 2, 4)非晶/纳米晶合金薄带; 利用XRD、DSC、TEM和VSM研究了高Fe含量Fe-Cu-Nb-Si-B系非晶/纳米晶合金的微观结构和磁性, 并通过添加Nb元素优化了高Fe含量合金的磁性。研究结果表明: Zr和Nb元素的添加能明显提高Fe78Si9B13合金的非晶形成能力和热稳定性; 高Fe含量的Fe-Cu-Nb-Si-B系纳米晶合金为典型的非晶/纳米晶双相结构, 合金的饱和磁化强度Ms>180 emu/g, 且合金的矫顽力Hc在2Oe-9Oe之间, 具有良好的软磁性能; Nb元素能显著细化Fe-Cu-Nb-Si-B系合金晶粒尺寸, 从而能显著降低合金的矫顽力, 改善合金的软磁性能; 当Fe含量在80%-83%(原子百分比, 下同)之间时, 合金具有良好的软磁性能, 但当Fe含量达到85%时, 会有Fe2B、Fe3B相析出, 从而显著恶化其软磁性能。

关键词 金属材料非晶/纳米晶合金非晶形成能力饱和磁化强度矫顽力    
Abstract

The effect of transition metal elements, such as Zr, Nb, Mo and Cu on the amorphous forming ability, thermal stability and magnetic propertywere investigated for the Fe78Si9B13 alloy.By varying the Fe content of the Fe74Cu1Si13B9Nb3amorphous alloy, two series alloys, i.e. Fe(76+x)Cu1Nb3Si(11-x)B9(x=0, 2, 4) and Fe(79+x)Cu1Nb2Si(6-x)B12(x=0, 2, 4) amorphous- and nanocrystalline-alloyswere prepared and finally their ribbons were producedby melt-spinning.The microstructures and magnetic properties of the prepared ribbonswere investigated by XRD, DSC, TEM and VSM etc. and the soft magnetic properties ofthe high Fe content alloyswere optimized by increasing the content of Nb.The results showed that theelements of Zr and Nb can effectively improve the amorphous forming ability and thermal stability of Fe78Si9B13 alloys; A seriesFe-Cu-Nb-Si-B amorphous- and nanocrystalline-alloys with Fe content >80% (atomic fraction) were successfully prepared, themicrostructures of which are typically composed of dual amorphous- and nanocrystalline-phase. Their saturation magnetizations Bs are larger than 180emu/g and coercivitiesHcare between 2Oe and 9Oe, which means the alloys exhibit a good soft magnetic property. Thecoercivity would be reducedsince the grain size would be refined and thus the soft magnetic properties would be significantly improved as the Nbcontent increases. When the Fe content is between 80% (atomic fraction) and 83% (atomic fraction), the alloyswould exhibit an excellent soft magnetic property but when the Fe content comes to 85% (atomic fraction), phases of Fe2B and Fe3B would be precipitated that would furiouslydeterioratethe soft magnetic properties of the alloys.

Key wordsmetallic materials    amorphous and nanocrystalline alloy    amorphous forming ability    saturation magnetization    coercivity
收稿日期: 2015-07-22     
基金资助:* 国家技术支撑计划项目子课题2013BAE08B01, 河北省应用基础研究计划重点基础研究项目13961001D和天津市应用基础与前沿技术研究项目14JCZDJC38600资助
作者简介: 李强
图1  Fe78Si13B9中添加Zr、Nb、Mo和Cu合金薄带XRD图谱
图2  Fe77Cu1Si13B9、Fe74Cu1M3Si13B9(M=Zr、Nb)合金DSC曲线
Sample Tg(K) Tx(K) Tp1(K) Tp2(K) Tm(K) Tl(K) ΔTx(K) TrgTg/Tm
Fe77Cu1Si13B9 711.4 723.0 828.0 1428.8 1496
Fe74Cu1Zr3Si13B9 720.9 772.5 795.3 923.7 1384.2 1518 51.6 0.521
Fe74Cu1Nb3Si13B9 708.6 755.9 805.8 969.4 1373 1511 47.3 0.516
表1  合金的特征温度(Tg, Tx, Tp1, Tp2, Tm, Tl)和GFA参数(ΔTx, Trg)
图3  Fe(77-x)Cu1MxSi9B12合金薄带快淬条件下M-H磁滞回线图
Sample Ms(emu/g) Hc(Oe) Mr(emu/g)
Fe78Si13B9 157.79 2.66 8.02
Fe77Cu1Si13B9 171.70 2.29 9.84
Fe74Cu1Zr3Si13B9 164.64 2.21 16.51
Fe74Cu1Nb3Si13B9 162.69 2.14 14.00
Fe74Cu1Mo3Si13B9 156.37 2.17 9.31
表2  Fe(77-x)Cu1MxSi13B9合金薄带的磁性参数
图4  Fe(74+x)Cu1Nb3Si(13-x)B9(x=0, 2, 4, 6)合金的XRD图
图5  Fe85Cu1Nb2Si2B10和Fe(79+x)Cu1Nb2Si(6-x)B12(x=0, 2, 4)合金的XRD图
图6  合金薄带的TEM像
Sample Ms(emu/g) Hc(Oe) Mr(emu/g)
Fe74Cu1Nb3Si13B9 162.69 2.14 14.00
Fe76Cu1Nb3Si11B9 170.10 2.30 16.52
Fe78Cu1Nb3Si9B9 175.14 2.30 17.03
Fe79Cu1Nb2Si6B12 177.58 2.21 11.48
Fe80Cu1Nb3Si7B9 181.21 6.27 25.45
Fe81Cu1Nb2Si4B12 184.16 2.83 16.34
Fe83Cu1Nb2Si2B12 188.37 9.73 40.26
Fe85Cu1Nb2Si2B10 185.20 94.757 77.64
表3  高Fe含量Fe-Cu-Nb-Si-B系合金的磁性参数
图7  Fe-Cu-Nb-Si-B系合金的Bs和Hc随Fe含量变化图
图8  Fe(83-x)Cu1Nb(2+x)Si2B12(x=0, 1, 2, 3)合金薄带的XRD图
图9  Fe(83-x)Cu1Nb(2+x)Si2B12(x=1, 2, 3)合金的Bs和Hc随Nb含量变化图
Sample Bs(eum/g) Hc(Oe) Mr(emu/g)
Fe83Cu1Nb2Si2B12 188.37 9.73 40.26
Fe82Cu1Nb3Si2B12 185.42 8.56 43.49
Fe81Cu1Nb4Si2B12 183.77 2.42 19.72
Fe80Cu1Nb5Si2B12 179.56 1.96 18.78
表4  Fe(83-x)Cu1Nb(2+x)Si2B12(x=1, 2, 3)合金薄带磁性参数
1 QI Ruilei, TONG Hui, YAN Mi, Structure and magnetic properties of nanocrystalline Fe73.5Cu1Nb3-xTixSi13.5B9 (x=0, 1, 2, 3) powders, Rare Metal Materials and Engineering, 41(3), 510(2012)
1 (亓瑞磊, 童辉, 严密, Fe73.5Cu1Nb3-xTixSi13.5B9(x=0, 1, 2, 3)合金粉的结构与磁性, 稀有金属材料与工程, 41(3), 510(2012))
2 Suryanarayana C, Inoue A, Iron-based bulk metallic glasses, International Materials Reviews, 58(3), 131(2013)
3 Chen F G, Wang Y G, Miao X F, Hong H, Bi K, Nanocrystalline Fe83P16Cu1 soft magnetic alloy produced by crystallization of its amorphous precursor, Journal of Alloys and Compounds, 549(5), 26(2013)
4 Yoshizawa Y, Oguma S, Yamauchi K, Magnetic properties of nano-crystalline alloy Fe-Si-B, J. Appi. Phys., 64, 6040(1988)
5 ZHANG Yanzhong, High-frequency magnetic properties ofnanocrystallineFe67.9Cu0.5Nb0.6Cr3V1Si14B13alloy with high initial permeability, Metallic Functional Materials, 10(3), 125(2003)
5 (张延忠, 导磁纳米晶Fe67.9Cu0.5Nb0.6Cr3V1Si14B13合金的高频磁性能, 金属功能材, 10(3), 125(2003))
6 Yoshizawa Y, Magnetic properties and application of nanostructured soft magnetic materials, Scripta Materialia, 44(8-9), 1321(2001)
7 Jiao Z B, Li H X, Wu Y, Gao J E, Wang S L, Yi Seonghoon, Lu Z P, Effects of Mo additions on the glass-forming ability and magnetic properties of bulk amorphous Fe-C-Si-B-P-Mo alloys, Science China Physics, Mechanics and Astronomy, 53(3), 430(2010)
8 XIAO Li, ZHANG Ke, HUA Zhong, Yao Bin, Effects of boron content on crystallization formability and magnetic properties of Fe91-xZr5BxNb4 amorphous alloys, Acta Metallurgica Sinica, 41(2), 203(2005)
8 (肖利, 张可, 华中, 姚斌, 硼含量对Fe-Zr-B-Nb非晶合金的晶化、形成能力和磁性的影响, 金属学报, 41(2), 203(2005))
9 DONG Lirong, ZHANG Liwen, ZUO Bin, YU Wanqiu, HUA Zhong, Influences of Nb addition on the glass forming ability and magnetic properties in Fe-Y-B alloy, Electronic Components and Materials, 32(6), 53(2013)
9 (董丽荣, 张立文, 左彬, 于万秋, 华中, Nb添加对Fe-Y-B合金非晶形成能力和磁性的影响, 电子元件与材料, 32(6), 53(2013))
10 ZHANG Yanan, WANG Youjun, KONG Lingti, LI Jinfu, Influence of Y additation on the glass forming ability and soft magnetic properties of Fe-Si-B amorphous alloy, Acta Phys. Sin., 61(15), 157502(2012)
10 (张亚楠, 王有骏, 孔令体, 李金富, Y对Fe-Si-B合金非晶形成能力及软磁性能的影响, 物理学报, 61(15), 157502(2012))
11 Herzer G, Grain structure and magnetism of nanocrystallineferromagnets, IEEE Transactions on Magnetics, 25(5), 3327(1989)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.