Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (9): 707-713    DOI: 10.11901/1005.3093.2015.118
  本期目录 | 过刊浏览 |
费托蜡温拌沥青结合料相容性的评定方法
刘克非1(),吴超凡2,3
1. 中南林业科技大学土木工程与力学学院 长沙 410004
2. 湖南大学土木工程学院 长沙 410082
3. 湖南省交通科学研究院 长沙 410015
Evaluation Method for Compatibility of Sasobit Warm Mix Asphalt Binder
Kefei LIU1,**(),Chaofan WU2,3
1. College of Civil Engineering and Mechanics, Central South University of Forestry & Technology,
Changsha 410004, China
2. College of Civil Engineering, Hunan University, Changsha 410082, China
3. Hunan Communications Research Institute, Changsha 410015, China
引用本文:

刘克非,吴超凡. 费托蜡温拌沥青结合料相容性的评定方法[J]. 材料研究学报, 2015, 29(9): 707-713.
Kefei LIU, Chaofan WU. Evaluation Method for Compatibility of Sasobit Warm Mix Asphalt Binder[J]. Chinese Journal of Materials Research, 2015, 29(9): 707-713.

全文: PDF(2369 KB)   HTML
摘要: 

用溶解度参数计算、离析软化点差值测试、差示扫描量热分析和原子力显微镜微观扫描等方法对比研究了苯乙烯-丁二烯-苯乙烯三嵌段共聚物(SBS)和费托蜡(Sasobit)改性(温拌)剂与70#A基质沥青间的相容性。结果表明, 溶解度参数δ不能体现分子量对聚合物相容性的影响, 且沥青和某些改性剂均为高分子量的多相结构, 共混后的结构复杂, 不能简单地将改性沥青当作一个整体。因此, 不能使用Hildebrand理论计算公式评价改性剂与基质沥青间的相容性。Sasobit的加入不仅提高了基质沥青的玻璃化转变温度, 还明显改变了基质沥青吸热峰曲线的形状, 因而与基质沥青良好相容。SBS和Sasobit复合改性剂的加入, 大大降低了改性剂与基质沥青间的相容性。

关键词 无机非金属材料Sasobit温拌沥青相容性溶解度参数原子力显微镜    
Abstract

The compatibility between 2 modifiers Styrene-Butadiene-Styrence Block Copolymer (SBS) and Sasobit and 70#A base asphalt was comparatively studied by means of solubility calculation, measurement of difference of segregation softening point, differential scanning calorimetry and atomic force scanning microscope. The results show that the solubility parameter can not reflect the influence of molecular weight on polymer compatibility, due to the asphalt and modifiers all have multiphase structures with high molecular weight, a complex structure should be expected for the bland of the asphalt and a modifier. The compatibility of the modified asphalt can not be simply evaluated as a whole by Hildebrand theoretical calculation formula. Adding Sasobit into base asphalt can not only increase the glass transition temperature of the base asphalt, but also change the shape of its endothermic peak curve significantly, so Sasobit has good compatibility with base asphalt. However, adding the two modifiers SBS and Sasobit can greatly reduce the compatibility between modifier and base asphalt.

Key wordsinorganic non-metallic materials    Sasobit warm mix asphalt    compatibility    solubility parameter    atomic force microscope
收稿日期: 2015-03-10     
基金资助:* 住房和城乡建设部科技项目2012-K4-18和湖南省科技计划重点项目2011SK2022资助。
Index 70#A base asphalt SBS modified asphalt Sasobit warm mix asphalt
Penetration (25℃, 5 s, 100 g) / 0.1 mm 76 58 53
Penetration index PI -0.8 0.33 0.30
Softening point TR&B (not less than) / ℃ 46.4 68.0 73.0
Ductility (10℃, not less than) / cm 46 63 26
Ductility (15℃, not less than) / cm >100 81 >100
Density (15℃) / gcm-3 1.010 1.029 1.009
表1  各沥青结合料主要技术指标
Melting point /℃ Flash point /℃ Viscosity (135℃)/Pas Penetration (25℃)/0.1 mm Penetration (65℃)/0.1 mm Density (25℃)/(gcm-3)
99 285 0.012 <1 7 0.9
表2  Sasobit温拌添加剂基本技术指标
图1  制备改性沥青的工艺流程图
Material type Chemical composition δ value/(J1/2cm-3/2)
70#A base asphalt Asphaltene 10.93
Colloid 10.93
Aromatics 9.15
Saturates 7.45
SBS (styrene-butadiene-styrene block copolymer) Polystyrene (PS) 9.10
Polybutadiene (PB) 8.40
Sasobit(solid paraffin) N-alkanes (main components) 14.30
表3  各种材料的化学组成与溶解度参数
Material type 70#A base asphalt SBS modified asphalt Sasobit warm mix asphalt
Components Asphaltene /% 5.21 5%SBS+ 95%70#A 3%Sasobit +97%70#A
Colloid /% 26.39
Aromatics /% 48.84
Saturates /% 19.56
Solubility parameter of base asphalt or modifier δ/(J1/2cm-3/2) 9.47 8.61 14.30
δ difference between base asphalt and modifier /(J1/2cm-3/2) 0 0.86 4.83
Softening point /℃ 46.4 68.0 73.0
Difference of segregation softening point/℃ 1.3 10.3 3.3
Compatibility codfficient between base asphalt and modifier △/% - 10.53 77.08
表4  不同改性剂与基质沥青相容性测试计算结果
图2  各沥青结合料的DSC曲线
Test parameters 70#A SBS 70#A+Sasobit
Initial temperature of change endothermic peak /℃ 47.2 34.7 31.4
Peak temperature of endothermic peak /℃ 58.9 43.2 54.3
Peak area /mJ 19.743 35.670 65.172
Calorific calue of endothermic peak /mJ·mg-1 1.241 2.153 6.247
Glass transition temperature Tg /℃ -8.7 -10.7 -6.5
表5  各沥青结合料DSC特征数据结果
图3  70#A基质沥青的AFM图像
图4  SBS改性沥青的AFM图像
图5  70#A+Sasobit温拌沥青AFM图像
图6  SBS+ Sasobit 温拌沥青AFM图像
1 Wu C F,Zeng M L, Effects of additives for warm mix asphalt on performance grades of asphalt binders, Journal of Testing and Evaluation, 40(2), 272(2012)
2 WU Chaofan,ZENG Menglan, WANG Maowen, XIA Yang, Determination of the mixing and compaction temperatures for warm mix asphalt with Sasobit, Journal of Hunan University (Natural Science), 37(8), 2(2010)
2 (吴超凡, 曾梦澜, 王茂文, 夏 漾, 添加Sasobit 温拌沥青混合料的拌和与压实温度确定, 湖南大学学报 (自然科学版), 37(8), 2(2010))
3 P. Giovanni, M. Antonio, B. Dario,Effect of composition on the properties of SEBS modified aasphalts, European Polymer Journal, 42, 1113(2006)
4 F. Q. Dong, W. Z. Zhao, Y.Z. Zhang,In?uence of SBS and asphalt on SBS dispersion and the performance of modi?ed asphalt, Construction and Building Materials, 62, 5(2014)
5 H. Y. Fu, L. D. Xie, D. Y. Dou,Storage stability and compatibility of asphalt binder modi?ed by SBS graft copolymer, Construction and Building Materials, 21, 1533(2007)
6 B. Sengoz, G. Isikyakar,Evaluation of the properties and microstructure of SBS and EVA polymer modi?ed bitumen, Construction and Building Materials, 22, 1905(2008)
7 B. Sengoz, A. Topal, G. Isikyakar,Morphology and image analysis of polymer modi?ed bitumens, Construction and Building Materials, 23, 1990(2009)
8 A. Khadiyar, A. Kavussi,Rheological characteristics of SBR and NR polymer modi?ed bitumen emulsions at average pavement temperatures, Construction and Building Materials, 47, 1102(2013)
9 J. Q Zhu, A. Birgisson, N. Kringos,Polymer modi?cation of bitumen: advances and challenges, European Polymer Journal, 54, 36(2014)
10 Y. A. Golubev, O. V. Kovaleva, N. P. Yushkin,Observations and morphological analysis of supermolecular structure of natural bitumen by atomic force microscopy, Fuel, 87, 36(2008)
11 X. K. Yu, N. A. Burnham, R. B. Mallick,A systematic AFM-based method to measure adhesion differences between micron-sized domains in asphalt binders, Fuel, 113, 446(2013)
12 FANG Yang,GUO Li, LI Zhihui, Determination of indicator parameters of compatibility properties of mixture comprising SBS modifier and matrix asphalt, Petroleum Asphalt, 24(2), 16(2010)
12 (方 杨, 郭 莉, 李智慧, SBS与基质沥青相容性指标的研究, 石油沥青, 24(2), 16(2010))
13 RAN Qisheng,The solubility of sodium aluminosilicate hydrate in caustic soda solution, Foreign Light Metal, (4), 4(1966)
13 (冉启盛, 铝硅酸钠水合物在苛性钠溶液中的溶解度, 国外轻金属, (4), 4(1966))
14 LV Ya,YAN Kai, SUN Lei, n-Alkanes deposition from diesels by three–dimensional solubility parameters sphere model, Journal of East China University of Science and Technology( Natural Science Edition), 36(6), 758(2010)
14 (吕 涯, 闫 凯, 孙 磊, 应用三维溶解度参数球形模型研究柴油中正构烷烃的分离, 华东理工大学学报(自然科学版), 36(6), 758(2010))
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.