Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (8): 634-640    DOI: 10.11901/1005.3093.2014.760
  本期目录 | 过刊浏览 |
同质异构SSiO2/MSiO2核/壳复合磨粒的合成
陈杨(),汪亚运,秦佳伟
常州大学材料科学与工程学院 常州 213164
Preparation of Allotropic Composite Abrasives SSiO2/MSiO2 with Core/Shell Structure
Yang CHEN(),Yayun WANG,Jiawei QIN
School of Materials Science and Engineering, Changzhou University, Changzhou 213164, China
引用本文:

陈杨,汪亚运,秦佳伟. 同质异构SSiO2/MSiO2核/壳复合磨粒的合成[J]. 材料研究学报, 2015, 29(8): 634-640.
Yang CHEN, Yayun WANG, Jiawei QIN. Preparation of Allotropic Composite Abrasives SSiO2/MSiO2 with Core/Shell Structure[J]. Chinese Journal of Materials Research, 2015, 29(8): 634-640.

全文: PDF(3177 KB)   HTML
摘要: 

以正硅酸乙酯为硅源、以氨水为催化剂、十六烷基三甲基溴化铵为结构导向模板剂, 在单分散实心氧化硅(Solid-SiO2, SSiO2)内核表面包覆介孔氧化硅(Mesoporous-SiO2, MSiO2)外壳, 合成了同质异构氧化硅(SSiO2/MSiO2)核/壳复合磨粒。用小角XRD、FESEM、HRTEM、FTIR、TGA和氮气吸附-脱附等手段对样品的结构进行了表征。结果表明, 具有放射状介孔孔道的MSiO2均匀连续包覆在SSiO2内核(210-230 nm)外表面, 形成了厚度为70-80 nm的外壳。壳层中的介孔孔道(孔径约2-3 nm)基本垂直于内核表面, 且复合磨粒样品具有较大的比表面积(558.2 m2/g)。用AFM形貌分析和轮廓分析评价了所制备的复合磨粒对SiO2薄膜的抛光特性。与常规实心SiO2磨粒相比, SSiO2/MSiO2复合磨粒明显改善了抛光表面质量并提高了材料去除率。这可能归因于MSiO2壳层通过机械和/或化学方面的作用对磨粒与衬底之间真实界面接触环境的优化。

关键词 无机非金属材料介孔氧化硅核壳结构复合磨粒化学机械平坦化    
Abstract

Core/shell structured composite abrasives with solid-silica (SSiO2) cores and mesoporous-silica (MSiO2) shells were synthesized using tetraethylorthosilicate as silica source, ammonia solution as catalyst and cetyltrimethylammonium bromide as sacrificial template. The prepared abrasives were characterized by small angle XRD, FESEM, HRTEM, FTIR, TGA, nitrogen adsorption-desorption isotherm and the corresponding pore size distribution. The results show that the MSiO2 shells (70-80 nm in thickness) with radial pores are evenly coated on the external surfaces of the SSiO2 cores (210-230 nm).The BET surface area of the prepared abrasives is 558.2 m2/g. The mesochannels (2-3 nm in pore size) in the (MSiO2) shell are perpendicular to the surface of the SSiO2 core. The topography, roughness and profile curve of silicon wafers with a SiO2 surface film of ca 1200 nm were investigated by AFM before and after chemical-mechanical polishing in the presence of abrasives. By comparison with the conventional abrasives SSiO2, the composite abrasives are in favor of decreasing the surface roughness and increasing the material removal rate of the polished wafers. The MSiO2 shells of the prepared composite abrasives may be contribute to optimize the real interfacial contact between abrasives and wafer surface through certain mechanical and/or chemical effects.

Key wordsinorganic non-metallic materials    mesoporous silica    core-shell structure    composite abrasives    chemical mechanical polishing
收稿日期: 2014-12-22     
基金资助:* 国家自然科学基金51205032和51405038及江苏省自然科学基金BK2012158资助项目。
图1  SSiO2微球样品的TEM照片和粒度分布曲线
图2  SSiO2/MSiO2复合磨粒样品煅烧前后的FTIR图谱和热失重曲线
图3  SSiO2/MSiO2复合磨粒的FESEM照片和粒度分布曲线
图4  SSiO2/MSiO2复合磨粒样品的TEM像
图5  SSiO2/MSiO2复合磨粒样品的小角XRD图谱、氮气吸附-脱附等温线和孔径分布曲线
图6  抛光前以及经SSiO2磨粒和SSiO2/MSiO2复合磨粒抛光后衬底表面的AFM二维形貌
图7  抛光前后衬底表面的AFM轮廓曲线
1 E. L. H. Thomas, G. W. Nelson, S. Mandal, J. S. Foord, O. A. Williams,Chemical mechanical polishing of thin film diamond, Carbon, 68, 473(2014)
2 Y. Zhou, G. Pan, X. Shi, L. Xu, C. Zou, H. Gong, G. Luo,XPS, UV-vis spectroscopy and AFM studies on removal mechanisms of Si-face SiC wafer chemical mechanical polishing (CMP), Applied Surface Science, 316, 643(2014)
3 F. Ilie,Models of nanoparticles movement, collision, and friction in chemical mechanical polishing (CMP), Journal of Nanoparticle Research, 14, 752(2012)
4 D. Guo, G. Xie, J. Luo,Mechanical properties of nanoparticles: basics and applications, Journal of Physics D: Applied Physics, 47, 013001(2014)
5 M. Fu, L. Wei, Y. Li, X. Zhou, S. Hao, Y. Li,Surface charge tuning of ceria particles by titanium doping: Towards significantly improved polishing performance, Solid State Science, 11(12), 2133(2009)
6 X. Feng, D. C. Sayle, Z. L. Wang, M. S. Paras, B. Santora, A. C. Sutorik, T. X. T. Sayle, Y. Yang, Y. Ding, X. Wang, Y. Her,Converting ceria polyhedral nanoparticles into single-crystal nanospheres, Science, 312(6), 1504(2006)
7 X. Zhao, R. Long, Y. Chen, Z. Chen,Synthesis, characterization of CeO2@SiO2 nanoparticles and their oxide CMP behavior, Microelectronic Engineering, 87(9), 1716(2010)
8 S. Armini, C. M. Whelan, K. Maex, J. L. Hernandez, M. Moinpourc,Composite polymer core-silica shell abrasive particles during oxide CMP: A defectivity study, Journal of the Electrochemical Society, 154(8), H667(2007)
9 S. Armini, J. De Messemaeker, C. M. Whelan, M. Moinpour, K. Maex,Composite polymer core-ceria shell abrasive particles during oxide CMP: A defectivity study, Journal of the Electrochemical Society, 155(9), H653(2008)
10 A. L. Chen, W. B. Mu, Y. Chen,Compressive elastic moduli and polishing performance of non-rigid core/shell structured PS/SiO2 composite abrasives evaluated by AFM, Applied Surface Science, 290, 433(2014)
11 CHEN Yang,LONG Renwei, CHEN Zhigang, DING Jianning, Synthesis of PS-core ceria-shell composite abrasive and its application in oxide CMP, Tribology, 30(1), 9(2010)
11 (陈 杨, 隆仁伟, 陈志刚, 丁建宁, 核-壳结构PS/CeO2复合磨料的制备及其氧化物化学机械抛光性能, 摩擦学学报, 30(1), 9(2010))
12 H. Lei, X. Wu, R. Chen,Preparation of porous alumina abrasives and their chemical mechanical polishing behavior, Thin Solid Films, 520(7), 2868(2012)
13 H. Lei, L. Jiang, R. Chen,Preparation of copper-incorporated mesoporous alumina abrasive and its CMP behavior on hard disk substrate, Powder Technology, 219, 99(2012)
14 H. Li, H. Lei, R. Chen,Preparation of porous Fe2O3/SiO2 nanocomposite abrasives and their chemical mechanical polishing behaviors on hard disk substrates, Thin Solid Films, 520(19), 6174(2012)
15 S. Chen, H. Lei, R. Chen,Preparation of porous alumina/ceria composite abrasive and its chemical mechanical polishing behavior, Journal of Vacuum Science & Technology B, 31, 021804(2013)
16 Y. Chen, Z. Li, N. Miao,Synergetic effect of organic cores and inorganic shells for core/shell structured composite abrasives for chemical mechanical planarization, Applied Surface Science, 314, 180(2014)
17 R. Chen, R. Jiang, H. Lei, M. Liang,Material removal mechanism during porous silica cluster impact on crystal silicon substrate studied by molecular dynamics simulation, Applied Surface Science, 264, 148(2013)
18 W. St?ber, A. Fink, E. Bohn,Controlled growth of monodisperse silica spheres in the micron size range, Journal of Colloid and Interface Science, 26, 62(1968)
19 S. F. Resende, E. H. M. Nunes, M. Houmard, W. L. Vasconcelos,Simple sol-gel process to obtain silica-coated anatase particles with enhanced TiO2-SiO2 interfacial area, Journal of Colloid and Interface Science, 433, 211(2014)
20 Z. Ran, Y. Sun, B. Chang, Q. Ren, W. Yang,Silica composite nanoparticles containing fluorescent solid core and mesoporous shell with different thickness as drug carrier, Journal of Colloid and Interface Science, 410, 94(2013)
21 M. Yang, G. Wang, Z. Yang,Synthesis of hollow spheres with mesoporous silica nanoparticles shell, Materials Chemistry and Physics, 2008, 111(1), 5(2008)
22 A. Mathew, S. Parambadath, S. S. Park, C. Ha,Hydrophobically modified spherical MCM-41 as nanovalve system for controlled drug delivery, Microporous and Mesoporous Materials, 200, 124(2014)
23 JI Yongjun,ZHANG Bin, ZHANG Kun, XU Le, PENG Honggen, WU Peng, Core/shell-structured ZSM-5@Mesoporous silica composites for shape-selective alkylation of toluene with methanol, Acta Chimica Sinica, 71, 371(2013)
23 (纪永军, 张 斌, 张 坤, 徐 乐, 彭洪根, 吴鹏,ZSM-5@Mesoporous Silica核壳复合结构分子筛的制备及其甲苯甲醇烷基化择形催化性能的研究, 化学学报, 71, 371(2013))
24 QI Juanjuan,XU Dongyao, CAI Qiang, ZHANG Wei, Preparation and characterization of radially porous silica and the core-shell structure, Chemical Journal of Chinese Universities, 33(4), 652(2012)
24 (齐娟娟, 徐东耀, 蔡 强, 张 伟, 放射孔二氧化硅及其核壳结构的制备与表征, 高等学校化学学报, 33(4), 652(2012))
25 L. H. He, O. C. Standard, T. T. Y. Huang, B. A. Latella, M. V. Swain,Mechanical behavior of porous hydroxyapatite, Acta Biomaterialia, 4(3), 577(2008)
26 P. Clément, S. Meille, J. Chevalier, C. Olagnon,Mechanical characterization of highly porous inorganic solids materials by instrumented micro-indentation, Acta Materialia, 61(18), 6649(2013)
27 D. Jauffrès, C. Yacou, M. Verdier, R. Dendievel, A. Ayral,Mechanical properties of hierarchical porous silica thin films: Experimental characterization by nanoindentation and finite element modeling, Microporous and Mesoporous Materials, 140(1-3), 120(2011)
28 V. Valtchev, L. Tosheva,Porous nanosized particles: Preparation, properties, and applications, Chemical Reviews, 113, 6734(2013)
29 S. Armini, I. U.Vakarelski, C. M. Whelan, K. Maex, K. Higashitani,Nanoscale indentation of polymer and composite polymer-silica core-shell submicrometer particles by atomic force microscopy, Langmuir, 23(4), 2007(2007)
30 Y. Chen, J. Lu, Z. Chen,Young's modulus of PS/CeO2 composite with core/shell structure microspheres measured using atomic force microscopy, J. Nanopart. Res., 14(2), 696(2012)
31 MENG Fanming,GAO Guixiang, WANG Xueli, Tribological performance of diatom shell with porous structure, Tribology, 34(5), 504(2014)
31 (孟凡明, 高贵响, 王雪丽, 硅藻壳孔状结构的摩擦学性能研究, 摩擦学学报, 34(5), 504(2014))
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.