Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (7): 505-510    DOI: 10.11901/1005.3093.2014.536
  本期目录 | 过刊浏览 |
氧化钇空心微球的制备及其复合橡胶的低频阻尼性能
张富青1,王维2,孙刚2,江学良2()
1. 武汉工程大学化学与环境工程学院 武汉 430073
2. 武汉工程大学材料科学与工程学院 武汉 430073
Preparation of Y2O3 Hollow Spheres and Low Frequency Damping Properties of Rubber Composite Reinforced with Y2O3 Hollow Spheres
Fuqing ZHANG1,Wei WANG2,Gang SUN2,Jiangtao CHEN2,Xueliang JIANG2,**()
1. School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
2. School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430073, China
引用本文:

张富青,王维,孙刚,江学良. 氧化钇空心微球的制备及其复合橡胶的低频阻尼性能[J]. 材料研究学报, 2015, 29(7): 505-510.
Fuqing ZHANG, Wei WANG, Gang SUN, Jiangtao CHEN, Xueliang JIANG. Preparation of Y2O3 Hollow Spheres and Low Frequency Damping Properties of Rubber Composite Reinforced with Y2O3 Hollow Spheres[J]. Chinese Journal of Materials Research, 2015, 29(7): 505-510.

全文: PDF(1800 KB)   HTML
摘要: 

以用分散聚合法制备的聚甲基丙烯酸甲酯(PMMA)微球作为牺牲模板, 用均相沉淀法制备PMMA/碱式碳酸钇(Y(OH)CO3)复合微球, 高温煅烧后得到氧化钇(Y2O3)空心微球, 将其与丁基橡胶复合制备了复合橡胶低频高阻尼材料。用傅里叶变换红外光谱分析(FTIR), 扫描电子显微镜(SEM), 透射电子显微镜(TEM), 热重分析仪(TG), X射线衍射分析(XRD)和X射线光电子能谱分析(XPS)等手段对Y2O3空心球的形貌与结构组成进行了表征。结果表明, Y2O3空心球由立方萤石结构的颗粒组成, 外空心直径为1 μm, 壳层的厚度约为80 nm。将Y2O3空心微球和粉体分别作为填料加入丁基橡胶中制备的Y2O3/丁基橡胶复合材料, 与加入Y2O3粉体相比, 加入Y2O3空心球明显提高了丁基橡胶的阻尼性能, 在8、18、28、50、65、90 Hz附近的损耗因子较大。

关键词 复合材料PMMA模板Y2O3空心球低频阻尼丁基橡胶    
Abstract

Poly(methyl methacrylate) (PMMA) spheres were firstly prepared through dispersion polymerization, then with which as sacrifice template, PMMA/Y(OH)CO3 composite microspheres were prepared by homogeneous precipitation technique. Thirdly, Y2O3 hollow spheres were obtained by calcination of PMMA/Y(OH)CO3 at elevated temperature, and finally Y2O3 hollow shperes reinforced butyl rubber composites were fabricated. The structure and morphology of the Y2O3 hollow nanospheres were characterized by means of Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray photoelectron spectrum (XPS), X-ray diffraction (XRD) and thermogravimetry (TG). The results show that hollow spheres composed of Y2O3 particles of face-centered cubic crystallorgraphic structure, and their diameter is about 1 μm with a thin shell thickness about 80 nm. The hollow microspheres and powders of Y2O3 as filler were added respectively into butyl rubber to prepare butyl rubber composites. It follows that the butyl rubber composites with addition of Y2O3 hollow spheres rather than that of Y2O3 powders exhibited better damping properties with larger loss factors by frequencies such as 8, 18, 28, 50, 65 and 90 Hz.

Key wordscomposites    polymethyl methacrylate    template    Y2O3    hollow nanospheres    low frequency damping capacity    butyl rubber
收稿日期: 2014-09-26     
基金资助:* 国家自然科学基金51273154、 武汉工程大学研究生教育创新基金CX2013085和绿色化工过程教育部重点实验室开放基金GCP201307资助项目。
图1  PMMA微球, PMMA/Y(OH)CO3复合微球, Y2O3空心微球的扫描电镜照片以及Y2O3空心微球的透射电镜照片
图2  PMMA微球模板、 PMMA/Y(OH)CO3复合微球和Y2O3空心球的红外谱图
图3  PMMA微球模板、PMMA/Y(OH)CO3复合微球和Y2O3空心球的TG曲线
图4  在不同温度煅烧的Y2O3空心球的XRD图谱
图5  Y2O3空心球的XPS全谱和Y 3d谱
图6  材料在不同温度下的阻尼性能
图7  材料在不同频率(0-100 Hz)下的阻尼性能
1 R. H. Krishna, B. M. Nagabhushana, H. Nagabhushana, N. S. Murthy, S. C. Sharma, C. Shivakumara, R. P. S. Chakradhar,Effect of calcination temperature on structural, photoluminescence, and thermoluminescence properties of Y2O3:Eu3+ nanophosphor, The Journal of Physical Chemistry C, 117(4), 1915(2013)
2 A. P. Jadhav, C. W. Kim, H. G. Cha,Effect of different surfactants on the size control and optical properties of Y2O3:Eu3+ nanoparticles prepared by coprecipitation method, The Journal of Physical Chemistry C, 113(31), 13600(2009)
3 Y. X. Zhang, S. S. Pan, X. M. Teng, Y. Y. Luo, G. H. Li,Bifunctional magnetic-luminescent nanocomposites: Y2O3/Tb nanorods on the surface of iron oxide/Silica core-shell nanostructures, The Journal of Physical Chemistry C, 112(26), 9623(2008)
4 G. A. Sotiriou, M. Schneider, S. E. Pratsinis,Color-tunable nanophosphors by codoping flame-made Y2O3 with Tb and Eu, The Journal of Physical Chemistry C, 115(4), 1084(2011)
5 J. A. Dorman, J. H. Choi, G. Kuzmanich, J. P. Chang,Elucidating the effects of a rare-earth oxide shell on the luminescence dynamics of Er3+:Y2O3 Nanoparticles, The Journal of Physical Chemistry C, 116(18), 10333(2012)
6 G. Jia, M. Yang, Y. H. Song, H. P. You, H. J. Zhang,General and facile method to prepare uniform Y2O3:Eu hollow microspheres, Crystal Growth and Design, 9(1), 301(2009)
7 M. K. Devaraju, S. Yin, T. Sato,A fast and template free synthesis of Tb:Y2O3 hollow microspheres via supercritical solvothermal method, Crystal Growth and Design, 9(6), 2944(2009)
8 Y. Xiao, D. P. Wu, Y. Jiang, N. Liu, J. L. Liu, K. Jiang,Nano-sized Y2O3:Eu3+ hollow spheres with enhanced photoluminescence properties, Journal of Alloys and Compounds, 509(19), 5755(2011)
9 Q. Wang, J. Guo, W. J. Jia, B. C. Liu, J. Zhang,Phase transformation, morphology evolution and luminescence property variation in Y2O3:Eu hollow microspheres, Journal of Alloys and Compounds, 542, 1(2012)
10 Z. H. Xu, Y. Gao, T. Liu, L. M. Wang, S. S. Bian, J. Lin,General and facile method to fabricate uniform Y2O3:Ln3+ (Ln3+ = Eu3+, Tb3+) hollow microspheres using polystyrene spheres as templates, Journal of Materials Chemistry, 22(40), 21695(2012)
11 H. F. Jiu, Y. H. Fu, L. X. Zhang, Y. X. Sun, Y. Z. Wang, T. Han,Preparation and luminescent properties of hollow Y2O3:Tb3+ microspheres, Micro and Nano Letters, 7(9), 947(2012)
12 C. B. Tan, Y. X. Liu, Y. N. Han, W. B. Li,Influence of carbon templates and Yb3+ concentration on red and green luminescence of uniform Y2O3:Yb/Er hollow microspheres, Journal of Luminescence, 131(6), 1198(2011)
13 G. X. Liu, S. J. Liu, X. T. Dong, J. X. Wang,Y2O3:Eu3+ Core-in-multi-hollow microspheres: facile synthesis and luminescence properties, Journal of Nanoscience and Nanotechnology, 11(11), 9757(2011)
14 G. Jia, H. P. You, Y. H. Song, Y. J. Huang, M. Yang, H. J. Zhang,Facile synthesis and luminescence of uniform Y2O3 hollow spheres by a sacrificial template route, Inorganic Chemical, 49(17), 7721(2010)
15 H. F. Jiu, Y. H. Fu, L. X. Zhang, Y. X. Sun, Y. Z. Wang,Effect of Eu, Tb codoping on the luminescent properties of Y2O3 hollow microspheres, Optical Materials, 35(2), 141(2012)
16 Y. Xiao, Z. Y. Gao, D. P. Wu, Y. Jiang, N. Liu, K. Jiang,Synthesis and photoluminescence properties of uniform Y2O3:Eu3+ hollow spheres with tunable shell thickness, Chemical Research in Chinese Universities, 27(6), 919(2011)
17 M. J. White, G. W. Swenson Jr., T. A. Borrowman, J. D. Borth,Low-frequency sound propagation in porous media: Glass spheres and pea gravel, Applied Acoustics, 73(11), 1146(2012)
18 L. G. Yu, Z. H. Li, R. Q. Wang, L. L. Ma,Analysis of underwater sound absorption of visco-elastic composites coating containing micro-spherical glass shell, Acta Physica Sinica, 62(6), 64301(2013)
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[4] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[5] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[6] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[7] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[8] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[9] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[10] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[11] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[12] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[13] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[14] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[15] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.