Please wait a minute...
材料研究学报  2015, Vol. 29 Issue (1): 32-38    DOI: 10.11901/1005.3093.2014.228
  本期目录 | 过刊浏览 |
Mg-B2O3-TiO2系的自蔓延高温合成机理*
王明远,李俊寿(),武小娟,李苏,赵芳
中国人民解放军军械工程学院 先进材料研究所 石家庄 050003
Self-propagating High Temperature Synthesis Mechanism of Mg-B2O3-TiO2 System
Mingyuan WANG,Junshou LI(),Xiaojuan WU,Su LI,Fang ZHAO
Institute of Advanced Materials, Ordnance Engineering College, Shijiazhuang 050003, China
引用本文:

王明远,李俊寿,武小娟,李苏,赵芳. Mg-B2O3-TiO2系的自蔓延高温合成机理*[J]. 材料研究学报, 2015, 29(1): 32-38.
Mingyuan WANG, Junshou LI, Xiaojuan WU, Su LI, Fang ZHAO. Self-propagating High Temperature Synthesis Mechanism of Mg-B2O3-TiO2 System[J]. Chinese Journal of Materials Research, 2015, 29(1): 32-38.

全文: PDF(6512 KB)   HTML
摘要: 

根据对Mg-B2O3-TiO2体系的热力学计算结果, 对反应的顺序做出初步判断; 然后用Cu楔块燃烧波淬息法分析SHS反应各区域产物的组成及形貌变化, 研究了晶体的合成和生长机理。热力学计算结果表明: 在反应过程中首先由Mg还原B2O3得到B和MgO, 其次Mg还原TiO2得到Ti和MgO, 最后B与Ti结合生成TiB2。对于在反应过程中的中间产物, 生成Ti3O5、Ti2O3、TiO的可能性依次降低。实验结果表明: 在燃烧中心由于反应较完全, 没有产生中间产物; 反应次中心和边缘的温度仍然较高, 有少量的Ti2O3、TiO; 在燃烧底部因温度较低反应不完全, 因而有少量的Ti3O5, 实验结果与热力学分析结果吻合。在反应过程中MgO先形核长大, 部分TiB2附着在MgO上形核, 随着温度的升高形成了细小的颗粒; 部分TiB2在粗大的MgO之间独立形核, 生长成典型的六角晶型; TiB2的生长机理属于L-S机理, B和Ti交互富集生成了典型的六角晶型。

关键词 无机非金属材料TiB2SHS燃烧波淬息法合成机理    
Abstract

The order of reactions for Mg-B2O3-TiO2 system was determined by thermodynamic calculation. Then the composition and morphology evolution of the product prepared by self-propagating high temperature synthesis were analyzed in terms of reaction zones of the process by Cu wedge combustion wave quenching method. The formation and growth mechanism of the TiB2 crystal grains was investigated as well. The results of thermodynamic calculation show that in the process of SHS reaction B and MgO were firstly obtained by reduction reaction between Mg and B2O3, then Ti and MgO was obtained by reduction reaction between Mg and TiO2; finally B reacts with Ti to form TiB2. In this process, the formation possibility of the intermediate products decreases corresponding to the following order: Ti3O5、Ti2O3 and TiO. The experimental results show that no intermediate products may be detected in the combustion center, where the reaction was entirely complete; however in zones near the center or at the edge there existed a small amount of Ti2O3 and TiO, where temperature was not high enough for completing the reaction; at the bottom zone of the combustion there existed a little Ti3O5, where temperature was too low for the reaction. Therefore, thermodynamic prediction coincides well with experimental results. It follows that during the reaction process of SHS, MgO firstly nucleates and grows up, while TiB2 may form through tow ways, by one way TiB2 nucleates on MgO crystals, and then grows into tiny particles as the rising temperature; by the other way TiB2 independently nucleates and grows up into hexagonal crystal in between large MgO crystals. The growth of TiB2 follows typical L-S mechanism; B and Ti alternatively gather and grow up to form hexagonal crystal.

Key wordsinorganic non-metallic materials    TiB2    SHS    combustion wave quenching rate method    synthesis mechanism
收稿日期: 2014-05-06     
基金资助:* 国家自然科学基金51172281资助项目。
图1  Mg-B2O3-TiO2体系各反应式的吉布斯自由能随温度变化的曲线
图2  铜楔块燃烧波淬冷法示意图
图3  铜楔块燃烧波淬冷法示意图
图4  各反应区燃烧产物XRD图
图5  燃烧产物低倍SEM图
图6  燃烧底部SEM图
图7  Mg-TiO2-B2O3体系的SHS反应机理示意图
图8  燃烧边缘SEM图
图9  燃烧次中心SEM图
图10  燃烧中心SEM图
图11  TiB2生长示意图
1 XIANG Xin,QIN Yan, Research progress of TiB2 and its composite materials, Journal of Ceramics, 20(2), 112(1999)
1 (向 新, 秦 岩, TiB2及其复合材料的研究进展, 陶瓷学报, 20(2), 112(1999))
2 ZOU Janping,SHEN Ming, Research progress of TiB2-based ceramic composites, Scientific Research and Application, 11, 7(2008)
2 (邹建平, 沈 明, TiB2基陶瓷复合材料的研究进展, 科研与应用, 11, 7(2008))
3 WANG Weiming,FU Zhengyi, JING Mingji, YUAN Runzhang, Preparation of TiB2 ceramic powders by self-propagating high temperature reduction synthesis, Journal of Silicate, 24, 52(1996)
3 (王为民, 傅正义, 金明姬, 袁润章, 自蔓延高温还原合成法制备TiB2陶瓷粉末, 硅酸盐学报, 24, 52(1996))
4 FU Zhengyi,YUAN Runzhang, Research of the self-propagating high-temperature synthesis process of TiB2, Journal of Silicate, 23, 26(1995)
4 (傅正义, 袁润章, TiB2的自蔓延高温合成过程研究, 硅酸盐学报, 23, 26(1995))
5 MA Aiqun,JIANG Mingxue, Phase diagram analysis of advantage area of TiB2 synthetic reaction mechanism, Journal of Chinese Nonferrous Metals, 21, 1409(2011)
5 (马爱群, 蒋明学, TiB2合成反应机理的优势区相图分析, 中国有色金属学报, 21, 1409(2011))
6 LI Zhenxi,CAO Chunxiao, The growth mechanism of boride in Ti-48Al+B alloy, Rare Metal Materials and Engineering, 30(1), 19(2001)
6 (李臻熙, 曹春晓, Ti-48Al+B合金中硼化物的生长机理, 稀有金属材料与工程, 30(1), 19(2001))
7 Rabiezadeh, A.M.Hadian, A.Ataie,Preparation of alumina/titanium diboride nano-composite powder by milling assisted sol-gel method, Int.Journal of Refractory Metals and Hard Materials, 31, 121(2012)
8 Calka, D.Oleszak,Synthesis of TiB2 by electric discharge assisted mechanical milling, Journal of Alloys and Compounds, 440, 346(2007)
9 Riccardo Ricceri,Paolo Matteazzi, A fast and low-cost room temperature process for TiB2 formation by mechanosynthesis, Materials Science and Engineering, 379, 341(2004)
10 ZHANG Yanan,DOU Zhihe, Research of growth mechanism TiB2 micro powder prepared by self-propagating metallurgical method, Journal of Inorganic Materials, 21, 583(2006)
10 (张延安, 豆志河, 自蔓延冶金法制备TiB2微粉的生长机理研究, 无机材料学报, 21, 583(2006))
11 ZHANG Haijun,LI Faliang, Preparation and microstructure evolution of diboride ultrafine powder by sol-gel and microwave carbothermal reduction method, J Sol-Gel Sci Technol, 45, 205(2008)
12 LIU Hongwei,ZHANG Long, WANG Jangjian, DU Xingkan, Preparation of TiB2-TiC composite ceramics by self-reacting injection forming, Journal of Materials Research, 22(3), 274(2008)
12 (刘宏伟, 张 龙, 王建江, 杜心康, 自反应喷射成形制备TiB2-TiC复合陶瓷, 材料研究学报, 22(3), 274(2008))
13 Kiyotaka Matsuura,Yuki Obara, Keisuke Kojima, Combustion synthesis of boride particle dispersed hard metal from elemental powders, Int.Journal of Refractory Metals & Hard Materials, 27, 376(2009)
14 ZHANG Lei,YANG Bing, CHEN Weina, ZHANG Xiaonan, Effects of TiB2 particles on the grain growth behavior of semi-solid aluminum matrix composites, Casting Technology, 31(8), 991(2010)
14 (张 磊, 杨 滨, 陈薇娜, 张晓楠, TiB2颗粒对半固态铝基复合材料晶粒长大行为的影响, 铸造技术, 31(8), 991(2010))
15 GAO Wenli,ZHANG Hu, ZHANG Erlin, ZENG Songyan, Surface morphology and formation mechanism of primary TiB2 crystal in Ti-Al-B alloy, Materials Science and Technology, 10(4), 387(2002)
15 (高文理, 张 虎, 张二林, 曾松岩, Ti-Al-B合金中初生TiB2晶体的表面形貌和形成机制, 材料科学与工艺, 10(4), 387(2002))
16 GAO Wenli,ZHANG Hu, ZHANG Erlin, ZENG Songyan, The main form of the microstructure of TiB2 in Ti-Al-B alloy, Casting Technology, 3, 176(2003)
16 (高文理, 张 虎, 张二林, 曾松岩, Ti-Al-B合金中TiB2微观形态的主要存在方式, 铸造技术, 3, 176(2003))
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.