Please wait a minute...
材料研究学报  2014, Vol. 28 Issue (11): 858-864    DOI: 10.11901/1005.3093.2014.197
  本期目录 | 过刊浏览 |
Ti3AlC2的高温临氢行为
陈辰1,2,张海斌1(),彭述明1,龙兴贵1,朱建国2
1. 中国工程物理研究院核物理与化学研究所 绵阳 621900
2. 四川大学材料科学与工程学院 成都 610065
High-Temperature Hydrogenation Behavior of Titanium Aluminum Carbide
Chen CHEN1,2,**,Haibin ZHANG1(),Shuming PENG1,Xinggui LONG1,Jianguo ZHU2
1. Institute of Nuclear Physics and Chemistry, Chinese Academy of Engineering Physics, Mianyang 621900
2. College of Materials Science and Engineering, Sichuan University, Chengdu 610065
引用本文:

陈辰,张海斌,彭述明,龙兴贵,朱建国. Ti3AlC2的高温临氢行为[J]. 材料研究学报, 2014, 28(11): 858-864.
Chen CHEN, Haibin ZHANG, Shuming PENG, Xinggui LONG, Jianguo ZHU. High-Temperature Hydrogenation Behavior of Titanium Aluminum Carbide[J]. Chinese Journal of Materials Research, 2014, 28(11): 858-864.

全文: PDF(4530 KB)   HTML
摘要: 

研究了Ti3AlC2体材料在氢气氛中的高温(1100~1400℃)热稳定性。采用XRD、SEM、SIMS和Raman分析等手段对Ti3AlC2临氢反应前后的物相组成、表面形貌进行了表征; 使用热力学软件Factsage计算了反应过程中的气态产物。结果表明, 在1100~1400℃氢气氛条件下有少量H溶解在Ti3AlC2材料中, Ti3AlC2发生了以Al元素缺失为特征的有限程度的分解反应。缺失的Al元素与气氛中极微量的氧反应形成了均匀但不致密的Al2O3膜; 而当反应温度为1400℃时, Al2O3膜发生了明显的脱落。使用热力学软件的计算结果预测, 部分缺失Al元素与H2反应生成气体产物AlH。初步的研究结果表明, 在1300℃以下Ti3AlC2具有较好的耐氢性能。

关键词 无机非金属材料临氢高温Ti3AlC2    
Abstract

The thermal stability of Ti3AlC2, a kind of ternary laminated machinable ceramic, in hydrogen atmosphere at 1100-1400℃ was investigated. The phase composition and surface morphology of Ti3AlC2 before and after hydrogenation were characterized by means of XRD, SEM, SIMS, and Raman. The resulted gaseous products of the hydrogenation process were calculated by Factsage software. Results show that during hydrogenation a small amount of hydrogen dissolves in Ti3AlC2; Ti3AlC2 decomposes into metastable phase of Ti3AlxC2 by stripping Al atoms. Most of the stripped Al atoms react with the scarce oxygen in the atmosphere to form a homogeneous but not dense Al2O3 film, which even spalls off at 1400℃. A gaseous phase of AlH is predicted by the calculation with thermodynamic software. The preliminary results indicate that Ti3AlC2 has a good hydrogen resistance at temperatures below 1300℃.

Key wordsinorganic non-metallic materials    hydrogenation    high temperature    Ti3AlC2
收稿日期: 2014-04-17     
基金资助:* 国家自然科学基金91326102,中国工程物理研究院科学技术发展基金2012B0302035和2013A0301012资助。
图1  Ti3AlC2在1100~1400℃氢气氛(其中O2的质量分数为10-6 %)中反应3 h后的XRD图谱
图2  Ti3AlC2在1200~1400℃氢气氛(其中O2的质量分数为10-6 %)中反应后的拉曼光谱
图3  Ti3AlC2及其在1200℃临氢后的SIMS分析
图4  Ti3AlC2标样在1100~1400℃氢气氛中处理3 h后的表面形貌照片
图5  Ti3AlC2在1100~1400℃氢气氛(O2的质量分数为10-6, %)中恒温3 h后表面形貌的SEM像
Elements A B C D E F
O 50.98 - 54.16 48.65 - 47.23
Al 43.27 14.03 39.64 48.56 14.03 50.39
Ti 1.72 70.35 0.47 0.46 70.35 0.49
C 4.03 15.62 5.73 2.33 15.62 1.89
表1  图4和图5中A~F点的能谱数据
图6  晶界处的元素线扫描分析
图7  1.013×105 Pa, 700~1200℃ Ti3AlC2与H2反应气态产物的模拟结果
1 H. Nowotny,Struktuchemie einiger verbindungen der ubergangsmetalle mit den elementer C, Si, Ge, Sn, Prog. Solid State Chem., 2, 27(1970)
2 Y. C. Zhou, Z. M. Sun,Electronic structure and bonding properties in layered ternary carbide Ti3SiC2, J. Phys: Condens. Mat., 12, 457(2000)
3 Y. C. Zhou, Z. M. Sun,Electronic structure and bonding properties of layered machinable Ti2AlC and Ti2AlN ceramincs, Phys. Rev. B, 61, 12570(2000)
4 G. Hug,Electronic structures of and composition gaps in the ternary Ti2MC, Phys. Rev. B, 74, 184113(2006)
5 M. W. Barsoum,T El-Raghy, Synthesis and characterization of a remarkable ceramic: Ti3SiC2, J. Am. Ceram. Soc., 79, 1953(1996)
6 M. W. Barsoum, M. Ali, T. El-Raghy,Processing and characterization of Ti2AlC, Ti2AlN and Ti2AlC0.5N0.5, Metall. Mater., Trans. A, 31, 1857(2000)
7 Y. C. Zhou, Z. M. Sun,Micro-scale plastic deformation of polycrystalline Ti3SiC2 under room-temperature compression, J. Euro. Ceram. Soc., 21, 1007(2001)
8 Y. W. Bao, W. Wang, Y. C. Zhou,Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements, Acta Mater., 52, 5297(2004)
9 A. Heinzel, G. Müller, A. Weisenburger,Compatibility of Ti3SiC2 with liquid Pb and PbBi containing oxygen, Journal of Nuclear Materials, 392, 255(2009)
10 J. C. Nappé, Ph. Grosseau, F. Audubert, B. Guilhot, M. Beauvy, M. Benabdesselam, I. Monnet,Damages induced by heavy ions in titanium silicon carbide: Effects of nuclear and electronic interactions at room temperature, Journal of Nuclear Materials, 385, 304(2009)
11 K. R. Whittle, M. G. Blackford, R. D. Aughterson, S. Moricca, G. R. Lumpkin, D. P. Riley, N. J. Zaluzec,Radiation tolerance of Mn+ 1AXn, phases, Ti3AlC2 and Ti3SiC2, Acta Mater., 58, 4362(2010)
12 C. X. Wang, T. F. Yang, S. Y. Kong, J. R. Xiao, J. M. Xue, Q. Wang, C. F. Hu, Q. Huang, Y. G. Wang,Effects of He irradiation on Ti3AlC2: Damage evolution and behavior of He bubbles, Journal of Nuclear Materials, 440, 606(2013)
13 X. D. Qu, Y. X. Wang, L. Q. Shi, W. Ding, M. Wang, Y. S. Zhu,Effect of hydrogen-doping on bonding properties of Ti3SiC2, Physica B, 406(23), 4460(2011)
14 WANG Xiaohui,The synthesis and performance of layered machinable ceramics Ti3AlC2, Ti2AlC, PhD Thesis, Institute of Metal Research, Chinese Academy of Sciences,Shenyang(2005)
14 (王晓辉, 层状可加工陶瓷Ti3AlC2、Ti2AlC的合成与性能, 中国科学院金属研究所博士论文, 沈阳(2005))
15 H. B. Zhang, Volker Presser,Christoph Berthold, Klaus Georg Nickel, X. Wang, Mechanisms and kinetics of the hydrothermal oxidation of bulk titanium silicon carbide, Journal of American Ceramic Society, 93(4), 1148(2010)
16 J. Y. Wang, Y. C. Zhou, T. Liao,A first-principles investigation of the phase stability of Ti2AlC with Al vacancies, Scripta Materialia, 58, 227(2008)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[5] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[6] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[7] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[8] 张敏, 张思倩, 王栋, 陈立佳. 一种镍基单晶高温合金的蠕变组织损伤对再蠕变行为的影响[J]. 材料研究学报, 2023, 37(6): 417-422.
[9] 周章瑞, 吕培森, 赵国旗, 张剑, 赵云松, 刘丽荣. 两种“WRe”型低成本第二代镍基单晶高温合金的高温持久变形机制[J]. 材料研究学报, 2023, 37(5): 371-380.
[10] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[11] 于森, 陈乐利, 罗锐, 袁志钟, 王爽, 高佩, 程晓农. 高温合金GH4169的动态再结晶和组织演化机制[J]. 材料研究学报, 2023, 37(3): 211-218.
[12] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[13] 陈瑞志, 刘丽荣, 郭圣东, 张迈, 卢广先, 李远, 赵云松, 张剑. 一种6Re/3Ru镍基单晶高温合金微观组织的稳定性和高温持久性能[J]. 材料研究学报, 2023, 37(10): 721-730.
[14] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[15] 王兴平, 薛文斌, 王文选. Zr-2合金表面ZrO2/Cr复合膜的高温蒸汽氧化行为[J]. 材料研究学报, 2023, 37(10): 759-769.