Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (10): 759-769    DOI: 10.11901/1005.3093.2022.633
  研究论文 本期目录 | 过刊浏览 |
Zr-2合金表面ZrO2/Cr复合膜的高温蒸汽氧化行为
王兴平1,2(), 薛文斌2, 王文选3
1.兰州交通大学材料科学与工程学院 兰州 730070
2.北京师范大学核科学与技术学院 射线束技术教育部重点实验室 北京 100875
3.兰州交通大学机电工程学院 兰州 730070
High Temperature Steam Oxidation Behavior of Zr-2 Alloy with ZrO2/Cr Composite Coating
WANG Xingping1,2(), XUE Wenbin2, WANG Wenxuan3
1.School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2.Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
3.School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
引用本文:

王兴平, 薛文斌, 王文选. Zr-2合金表面ZrO2/Cr复合膜的高温蒸汽氧化行为[J]. 材料研究学报, 2023, 37(10): 759-769.
Xingping WANG, Wenbin XUE, Wenxuan WANG. High Temperature Steam Oxidation Behavior of Zr-2 Alloy with ZrO2/Cr Composite Coating[J]. Chinese Journal of Materials Research, 2023, 37(10): 759-769.

全文: PDF(15803 KB)   HTML
摘要: 

用微弧氧化(MAO)和磁过滤阴极真空弧离子镀(FCVAD)在Zr-2合金表面制备ZrO2/Cr复合膜,用热重分析仪(TGA)评估了Zr-2合金基体和ZrO2/Cr复合膜在900~1100℃蒸汽环境中的抗氧化性能,并分析其氧化后氧化层的截面结构、相组成和成分深度分布。结果表明,在900、1000和1100℃蒸汽环境中分别氧化3600 s后,ZrO2/Cr复合膜试样单位面积增重约为Zr-2合金基体的3/8、1/4和2/5。在高温蒸汽环境中,ZrO2/Cr复合膜表面氧化生成的致密Cr2O3膜能抑制氧向内扩散,提高锆合金的抗蒸汽氧化性能,阻止锆试样在1000℃蒸汽环境中出现分离氧化。ZrO2/Cr复合膜的表面Cr层完全消耗前,Cr涂层的氧化主要取决于铬向外扩散,而不是氧向内扩散。在蒸汽氧化过程中,MAO膜的中间层能抑制氢渗透进入锆合金基体。

关键词 金属材料Zr-2合金ZrO2/Cr复合膜高温蒸汽氧化氧化动力学分离氧化    
Abstract

A ZrO2/Cr composite coating on Zr-2 alloy was prepared by micro-arc oxidation (MAO) and filtered cathodic vacuum arc deposition (FCVAD) treatments. The oxidation resistance of bare and ZrO2/Cr-coated Zr alloys was estimated in 900~1100°C steam environment using a thermogravimetric analyzer (TGA) and their cross-sectional structures, phase constituents and composition depth profiles before and after steam oxidation were analyzed. The results showed that the mass gain per unit area of ZrO2/Cr-coated Zr alloy was about 3/8, 1/4 and 2/5 of that of bare Zr alloy after 3600 s steam oxidation at 900, 1000 and 1100℃, respectively. In high temperature water vapor, the dense Cr2O3 film formed on the surface of ZrO2/Cr-coated one suppressed the inward oxygen diffusion, which improved the steam oxidation resistance of Zr-2 alloy and inhibited the occurrence of breakaway oxidation at 1000°C. Before the Cr layer of ZrO2/Cr composite coating was completely oxidized into Cr2O3, the oxidation of Cr layer was principally controlled by the outward chromium diffusion rather than inward oxygen diffusion. The MAO interlayer restrained hydrogen permeation into Zr alloy substrate during the steam oxidation.

Key wordsmetallic materials    Zr-2 alloy    ZrO2/Cr composite coating    high-temperature steam oxidation    oxidation kinetics    breakaway
收稿日期: 2022-11-28     
ZTFLH:  TG174.442  
基金资助:北京市自然科学基金(2172029);国家自然科学基金(51671032);甘肃省科技计划(20JR10RA269);甘肃省教育厅创新基金(2021B-099);兰州交通大学青年基金(2023002)
通讯作者: 王兴平,wangxplju@163.com,研究方向为金属表面处理
Corresponding author: WANG Xingping, Tel: 18298491716, E-mail: wangxplju@163.com
作者简介: 王兴平,男,1992年生,博士
图1  Zr-2合金表面微弧氧化膜的形貌、结构和相组成
图2  Zr-2合金表面ZrO2/Cr复合膜的结构、成分和相组成
图3  Zr-2合金及ZrO2/Cr复合膜在不同温度蒸汽中的氧化动力学曲线
Temperature/Bare Zr-2ZrO2/Cr-coated Zr-2
KnnKnnKnnKnn
9002.67×10-23--8.60×10-42--
10003.18×10-223.74×10–319.49×10-41--
11002.01×10-12--2.88×10-31--
表1  Zr-2合金及ZrO2/Cr复合膜在不同温度蒸汽中氧化动力学参数
图4  Zr-2合金在不同温度蒸汽中氧化3600 s后截面的结构和GDOES成分深度分布
图5  ZrO2/Cr复合膜在不同温度蒸汽中氧化3600 s后的截面结构和GDOES成分深度分布
ElementPoint 1Point 2Point 3Point 4Point 5
Zr70.9935.9737.8115.142.38
Sn0.630.350.540.190.10
Cr0.150.287.2253.5821.82
O28.2463.4054.4331.0975.70
表2  ZrO2/Cr复合膜试样1100℃蒸汽氧化3600 s后的截面成分
图6  Zr-2合金和ZrO2/Cr复合膜在不同温度蒸汽中氧化3600 s后截面的金相组织
图7  Zr-2合金和ZrO2/Cr复合膜在不同温度的蒸汽中氧化3600 s后的XRD谱
图8  扩散系数与温度的关系
1 Terrani K A. Accident tolerant fuel cladding development: promise, status, and challenges [J]. J. Nucl. Mater., 2018, 501: 13
doi: 10.1016/j.jnucmat.2017.12.043
2 Yang J Q, Steinbrück M, Tang C C, et al. Review on chromium coated zirconium alloy accident tolerant fuel cladding [J]. J. Alloys Compd., 2022, 895: 162450
doi: 10.1016/j.jallcom.2021.162450
3 Han X C, Chen C, Tan Y Q, et al. A systematic study of the oxidation behavior of Cr coatings on Zry4 substrates in high temperature steam environment [J]. Corros. Sci., 2020, 174: 108826
doi: 10.1016/j.corsci.2020.108826
4 Park J H, Kim H G, Park J Y, et al. High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings [J]. Surf. Coat. Technol., 2015, 280: 256
doi: 10.1016/j.surfcoat.2015.09.022
5 Zeng S, Li P C, Tian J H, et al. Influence of Al content on the oxidation behavior of CrAl coating on Zry-4 alloys in 1200℃ steam [J]. Corros. Sci., 2022, 198: 110115
doi: 10.1016/j.corsci.2022.110115
6 He L X, Liu C H, Lin J H, et al. Microstructure, oxidation and corrosion properties of FeCrAl coatings with low Al content prepared by magnetron sputtering for accident tolerant fuel cladding [J]. J. Nucl. Mater., 2021, 551: 152966
doi: 10.1016/j.jnucmat.2021.152966
7 Tang C C, Steinbrueck M, Stueber M, et al. Deposition, characterization and high-temperature steam oxidation behavior of single-phase Ti2AlC-coated Zircaloy-4 [J]. Corros. Sci., 2018, 135: 87
doi: 10.1016/j.corsci.2018.02.035
8 Alat E, Motta A T, Comstock R J, et al. Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding [J]. J. Nucl. Mater., 2016, 478: 236
doi: 10.1016/j.jnucmat.2016.05.021
9 Brachet J C, Idarraga-trujillo I, Flem M L, et al. Early studies on Cr-coated zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors [J]. J. Nucl. Mater., 2019, 517: 268
doi: 10.1016/j.jnucmat.2019.02.018
10 Shan W Y, Wang Y L, Li J, et al. High temperature oxidation resistance of Cr based coating on zirconium alloy [J]. Chin. J. Mater. Res., 2022, 36(9): 699
doi: 10.11901/1005.3093.2021.200
10 单位摇, 王永利, 李 静 等. 锆合金表面Cr基涂层的耐高温氧化性能 [J]. 材料研究学报, 2022, 36(9): 699
doi: 10.11901/1005.3093.2021.200
11 McCafferty E. Standard electrode potentials of the elements as a fundamental periodic property of atomic number [J]. Electrochim. Acta, 2007, 52: 5884
doi: 10.1016/j.electacta.2007.03.022
12 Jin D L, Ni N, Guo Y, et al. Corrosion of the bonding at FeCrAl/Zr alloy interfaces in steam [J]. J. Nucl. Mater., 2018, 508: 411
doi: 10.1016/j.jnucmat.2018.05.071
13 Wang J H, Yao M Y, Zhou B X, et al. Hydrogen absorption behavior of zircaloy corroded in super-heated steam [J]. Rare Met. Mater. Eng., 2011, 40(5): 833
13 王锦红, 姚美意, 周邦新 等. Zr-Sn系合金在过热蒸气中的腐蚀吸氢行为 [J]. 稀有金属材料与工程, 2011, 40(5): 833
14 Yang J X, Wang X, Wen Q, et al. The effect of microarc oxidation and excimer laser processing on the microstructure and corrosion resistance of Zr-1Nb alloy [J]. J. Nucl. Mater., 2015, 467: 186
doi: 10.1016/j.jnucmat.2015.09.033
15 Lai P, Zhang H, Zhang L F, et al. Effect of micro-arc oxidation on fretting wear behavior of zirconium alloy exposed to high temperature water [J]. Wear, 2019, 424-425: 53
doi: 10.1016/j.wear.2019.02.001
16 Zou Z F, Xue W B, Jia X N, et al. Effect of voltage on properties of microarc oxidation films prepared in phosphate electrolyte on Zr-1Nb alloy [J]. Surf. Coat. Technol., 2013, 222: 62
doi: 10.1016/j.surfcoat.2013.01.059
17 Cheng Y L, Cao J H, Peng Z M, et al. Wear-resistant coatings formed on zircaloy-2 by plasma electrolytic oxidation in sodium aluminate electrolytes [J]. Electrochim. Acta, 2014, 116: 453
doi: 10.1016/j.electacta.2013.11.079
18 Cheng Y L, Matykina E, Skeldon P, et al. Characterization of plasma electrolytic oxidation coatings on zircaloy-4 formed in different electrolytes with AC current regime [J]. Electrochim. Acta, 2011, 56: 8467
doi: 10.1016/j.electacta.2011.07.034
19 Mittra J, Kavalur A, Kumbhar N T, et al. Effectiveness of pulsed laser deposited ZrO2 surface film over autoclaved oxide film on a Zr alloy for hydrogen barrier application [J]. Surf. Coat. Technol., 2020, 404: 126548
doi: 10.1016/j.surfcoat.2020.126548
20 Chen S N, Zhao Y M, Zhang Y F, et al. Influence of carbon content on the structure and tribocorrosion properties of TiAlCN/TiAlN/TiAl multilayer composite coatings [J]. Surf. Coat. Technol., 2021, 411: 126886
doi: 10.1016/j.surfcoat.2021.126886
21 Huang J, Shi X W, Liao B, et al. Composition control of TiAlN thin film by a novel multi-arc magnetic filter system [J]. China Surf. Eng., 2019, 32(2): 27
21 黄 杰, 史学伟, 廖 斌 等. 新型多弧磁过滤系统对TiAlN薄膜的组分调控 [J]. 中国表面工程, 2019, 32(2): 27
22 Wei K J, Wang X P, Li J H, et al. In-situ electrochemical study of plasma electrolytic oxidation treated Zr3Al based alloy in 300℃/14 MPa lithium borate buffer solution [J]. Thin Solid Films, 2020, 707: 138066
doi: 10.1016/j.tsf.2020.138066
23 Wei K J, Zhang Y F, Yu J H, et al. Analyses of hydrogen release on Zirlo alloy anode during plasma electrolytic oxidation [J]. Mater. Chem. Phys., 2020, 251: 123054
doi: 10.1016/j.matchemphys.2020.123054
24 Nakajima M, Miura Y, Fushimi K, et al. Spark anodizing behaviour of titanium and its alloys in alkaline aluminate electrolyte [J]. Corros. Sci., 2009, 51(7): 1534
doi: 10.1016/j.corsci.2008.10.021
25 Wang X P, Guan H H, Liao Y Z, et al. Enhancement of high temperature steam oxidation resistance of Zr-1Nb alloy with ZrO2/Cr bilayer coating [J]. Corros. Sci., 2021, 187: 109494
doi: 10.1016/j.corsci.2021.109494
26 Han X C, Xue J X, Peng S M, et al. An interesting oxidation phenomenon of Cr coatings on Zry-4 substrates in high temperature steam environment [J]. Corros. Sci., 2019, 156: 117
doi: 10.1016/j.corsci.2019.05.017
27 Wang F F, Zhang F X, Zheng L J, et al. Structure and corrosion properties of Cr coating deposited on aerospace bearing steel [J]. Appl. Surf. Sci., 2017, 423: 695
doi: 10.1016/j.apsusc.2017.06.099
28 Wang Y, Tang H, Wang R, et al. Cathodic voltage-dependent composition, microstructure and corrosion resistance of plasma electrolytic oxidation coatings formed on Zr-4 alloy [J]. RSC Adv., 2016, 6: 34616
doi: 10.1039/C6RA06197D
29 Kim H H, Kim J H, Moon J Y, et al. High-temperature oxidation behavior of zircaloy-4 and Zirlo in steam ambient [J]. J. Mater. Sci. Technol., 2010, 26(9): 827
30 Wang Y, Tang H, Han X C, et al. Oxidation resistance improvement of Zr-4 alloy in 1000℃ steam environment using ZrO2/FeCrAl bilayer coating [J]. Surf. Coat. Technol., 2018, 349: 807
doi: 10.1016/j.surfcoat.2018.05.005
31 Sawarn T K, Banerjee S, Samanta A, et al. Study of oxide and α-Zr(O) growth kinetics from high temperature steam oxidation of zircaloy-4 cladding [J]. J. Nucl. Mater., 2015, 467: 820
doi: 10.1016/j.jnucmat.2015.10.012
32 Leistikow S, Schanz G. Oxidation kinetics and related phenomena of zircaloy-4 fuel cladding exposed to high temperature steam and hydrogen-steam mixtures under PWR accident conditions [J]. Nucl. Eng. Des., 1987, 103(1): 65
doi: 10.1016/0029-5493(87)90286-X
33 Baek J H, Park K B, Jeong Y H. Oxidation kinetics of zircaloy-4 and Zr-1Nb-1Sn-0.1Fe at temperatures of 700~1200℃ [J]. J. Nucl. Mater., 2004, 335: 443
doi: 10.1016/j.jnucmat.2004.08.007
34 Wang X P, Liao Y Z, Guan H H, et al. High temperature oxidation behavior of pure Zr coated by microarc oxidation in 1000~1200℃ steam [J]. Surf. Technol., 2021, 50(6): 23
34 王兴平, 廖燚钊, 关浩浩 等. 锆表面微弧氧化膜1000~1200℃高温蒸汽氧化行为研究 [J]. 表面技术, 2021, 50(6): 23
35 Baek J H, Jeong Y H. Breakaway phenomenon of Zr-based alloys during a high-temperature oxidation [J]. J. Nucl. Mater., 2008, 372: 152
doi: 10.1016/j.jnucmat.2007.02.011
36 Lee C M, Mok Y K, Sohn D S. High-temperature steam oxidation and oxide crack effects of Zr-1Nb-1Sn-0.1Fe fuel cladding [J]. J. Nucl. Mater., 2017, 496: 343
doi: 10.1016/j.jnucmat.2017.10.013
37 Brachet J C, Rouesne E, Ribis J, et al. High temperature steam oxidation of chromium-coated zirconium-based alloys: kinetics and process [J]. Corros. Sci., 2020, 167: 108537
doi: 10.1016/j.corsci.2020.108537
38 Kim J M, Ha T H, Kim I H, et al. Microstructure and oxidation behavior of CrAl laser-coated zircaloy-4 alloy [J]. Metals, 2017, 7: 59
doi: 10.3390/met7020059
39 Zhang J S, Liao J J, Wei T G, et al. Oxygen diffusion behavior of oxidized zirconium alloy during vacuum annealing treatment [J]. Rare Met. Mater. Eng., 2021, 50: 1590
40 Hayward P J, George I M. Dissolution of ZrO2 in molten zircaloy-4 [J]. J. Nucl. Mater., 1999, 265: 69
doi: 10.1016/S0022-3115(98)00512-1
41 Pelleg J. Diffusion in ZrO2 (zirconia) [A]. Pelleg J. Diffusion in Ceramics [M]. Cham: Springer, 2016: 301
42 Sabioni A C S, Huntz A M, Silva F, et al. Diffusion of iron in Cr2O3: polycrystals and thin films [J]. Mater. Sci. Eng., 2005, 392A: 254
43 Hagel W C. Anion diffusion in α-Cr2O3 [J]. J. Am. Ceram. Soc., 1965, 48: 70
doi: 10.1111/jace.1965.48.issue-2
44 Kashkarov E, Afornu B, Sidelev D, et al. Recent advances in protective coatings for accident tolerant Zr-based fuel claddings [J]. Coatings, 2021, 11: 557
doi: 10.3390/coatings11050557
45 Abriata J P, Garcés J, Versaci R. The O-Zr (oxygen-zirconium) system [J]. Bull. Alloy Phase Diagrams, 1986, 7(2): 116
doi: 10.1007/BF02881546
46 Kim H L, Breslin J, Kim H G, et al. Social semantic cloud of tags: semantic model for folksonomies [J]. Knowl. Manage. Res. Pract., 2010, 8(3): 193
doi: 10.1057/kmrp.2010.10
47 Uetsuka H, Furuta T, Kawasaki S. Embrittlement of zircaloy-4 due to oxidation in environment of stagnant steam [J]. J. Nucl. Sci. Technol., 1982, 19(2): 158
doi: 10.1080/18811248.1982.9734128
48 Burton B, Reynolds G L. The estimation of the diffusion coefficient of oxygen in Cr2O3 from creep measurements [J]. J. Mater. Sci., 1978, 13: 219
doi: 10.1007/BF00739299
49 Zeng Z, Natesan K, Cai Z, et al. Effect of element diffusion through metallic networks during oxidation of type 321 stainless steel [J]. J. Mater. Eng. Perform., 2014, 23(4): 1247
doi: 10.1007/s11665-014-0909-8
50 Horita T, Yamaji K, Xiong Y P, et al. Oxide scale formation of Fe-Cr alloys and oxygen diffusion in the scale [J]. Solid State Ionics, 2004, 175: 157
doi: 10.1016/j.ssi.2004.09.045
51 England D M, Virkar A V. Oxidation kinetics of some nickel-based superalloy foils and electronic resistance of the oxide scale formed in air part I [J]. J. Electrochem. Soc., 1999, 146: 3196
doi: 10.1149/1.1392454
52 Lobnig R E, Schmidt H P, Hennesen K, et al. Diffusion of cations in chromia layers grown on iron-base alloys [J]. Oxid. Met., 1992, 37: 81
doi: 10.1007/BF00665632
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.