Please wait a minute...
材料研究学报  2008, Vol. 22 Issue (5): 500-504    
  论文 本期目录 | 过刊浏览 |
TiO2油基纳米流体的制备和流变性能
卢倩;向礼琴;黄景兴;赵晓鹏
西北工业大学电流变技术研究所
;
引用本文:

卢倩; 向礼琴; 黄景兴; 赵晓鹏 . TiO2油基纳米流体的制备和流变性能[J]. 材料研究学报, 2008, 22(5): 500-504.
, , , . [J]. Chin J Mater Res, 2008, 22(5): 500-504.

全文: PDF(776 KB)  
摘要: 制备TiO2和掺镧TiO2-变压器油纳米流体, 研究了流体的流变行为和电场调控特性. TiO2和掺镧TiO2均为锐钛矿型, 平均粒径为18.7 nm.TiO2和掺镧TiO2纳米流体的零场粘度42.4 mPa×s, 外观透明,存放六个月不发生沉降. 在外加电场的激励下,未掺镧TiO2纳米流体的粘度随着电场强度的增大而减小,而掺镧TiO2纳米流体的粘度随着电场强度的提高而增大,镧的掺杂量为3%时粘度最大增幅为35%. 掺镧纳米流体的介电损耗和介电常数明显增大,颗粒界面极化增强是流变性能改善的原因.
关键词 无机非金属材料TiO2纳米流体掺杂    
Key words
收稿日期: 2007-09-17     
ZTFLH:  TQ134  
1 B.Yang,Z.H.Han,Thermal conductivity enhancement in water-in-FC72 nanoemulsion fluids,Applied Physics Let- ters,88(26),261914(2006)
2 J.W.Hong,Y.Chen,W.F.Anderson,S.R.Quake,Molecular biology on a microfluidic chip,Journal of Physics:Con- densed Matter.,18(18),s691(2006)
3 R.Prasher,P.E.Phelan,P.Bhattacharya,Effect of aggre- gation kinetics on the thermal conductivity of nanoscale colloidal solutions,Nano Letters,6(7),1529(2006)
4 MA Kunquan,LIU Jing,New frontiers in nanofluid, Physics,36(4),295(2007) (马坤全,刘静,纳米流体研究的新动向,物理,36(4),295(2007))
5 J.A.Eastman,S.U.S.Choi,S.Li,W.Yu,L.J.Thompson, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles,Applied Physics Letters,78(6),718(2001)
6 H.B.Ma,C.Wilson,B.Borgmeyer,K.Park,Q.Yu, S.U.S.Choi,M.Tirumala,Effect of nanofluid on the heat transport capability in an oscillating heat pipe,Applied Physics Letters,88(14),143116(2006)
7 K.Di,Y.Zhu,X.Yang,C.Li,Electrorheological behavior of urea-doped mesoporous TiO_2 suspensions,Colloids and Surfaces B,280,71(2006)
8 X.Zhao,J.Yin,Preparation and electrorheological charac- teristics of rare-earth-doped TiO_2 suspensions,Chemistry of Materials,14(5),2258(2002)
9 QIAO Yinpo,YIN Jianbo,ZHAO Xiaopeng,Strong electrorheological effect of surface-modified titania nano- particles,Chinese Journal of Materials Research,20(4), 417(2006) (乔荫颇,尹剑波,赵晓鹏,表面改性纳米氧化钛的强电流变效应,材料研究学报,20(4),417(2006))
10 ZHAO Xiaopeng,YIN Jianbo,ZHAO Qian,XIANG Liqin, Properties of titania electrorheological fluids modified by rare earth,Chinese Journal of Materials Research,14(6), 604 (2000) (赵晓鹏,尹剑波,赵乾,向礼琴,稀土改性二氧化钛电流变液的性能,材料研究学报,14(6),604(2000))
11 O.M.Wilson,X.Y.Hu,D.G.Cahill,P.V.Braun,Colloidal metal particles as probes of nanoscale thermal transport in fluids,Physical Review B,66(22),224301(2002)
12 M.Whitte,W.A.Bullough,D.J.Peel,R.Firoozian,Depen- dence of electrorheological response on conductivity and polarization time,Physical Review E,49(6),5249(1994)
13 X.Zhao,J.Yin,H.Tang,Smart Materials and Structures: New Research,edited by P.L.Reece (USA,Nova Science Publishers,2007) p.1-66
14 P.D.Cozzoli,A.Kornowski,H.Weller,Low-temperature synthesis of soluble and processable organic-capped anatase TiO_2 nanorods,Journal of the American Chemi- cal Society,125(47),14539(2003)
15 X.Niu,L.Liu,W.Wen,P.Sheng,Hybrid approach to high- frequency microfiuidic mixing,Physical Review Letters, 97(4),044501(2006)
16 M.Joanicot,A.Ajdari,Droplet control for microfluidics, Science,309(5736),887(2005)
17 ZHAO Yan,WANG Baoxiang,DING Changlin,XIANG Liqin,ZHAO Xiaopeng,The preparation and electrorhe- ological property of nano titanate organosol,Journal of Functional Materials,11(36),1844(2006) (赵艳,王宝祥,丁昌林,向礼琴,赵晓鹏,纳米氧化钛有机溶胶的制备及其电流变性能,功能材料,11(36),1844(2006))
18 T.Hao,A.Kawai,F.Ikazaki,in: Proceeding of Interna- tional Conference on Electrorheological Fluids,edited by M.Nakano,K.Koyama (Singapore,World Scientific,1998) p.106
19 H.Block,P.Rattay,in:Progress in Electrorheology,edited by K.O.Havelka,F.E.Filisko (New York,Plenum Press, 1995) p.19
20 H.B(?)se,A.Trendler,in:Proceeding of 7th International Conference on ER Fluids and MR Suspensions,edited by R.Tao (Singapore,World Scientific,1999)p.80
21 J.Yin,X.Zhao,Enhanced electrorheological activity of mesoporous Cr-Doped TiO2 from activated pore wall and high surface area,Journal of Physics Chemistry B,110, 12916(2006)
22 J.Yin,X.Zhao,Giant electrorheological activity of high surface area mesoporous cerium-doped TiO_2 templated by block copolymer,Chemistry Physics Letters,398, 393(2004)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 闫春良, 郭鹏, 周靖远, 汪爱英. Cu掺杂非晶碳薄膜的电学性能及其载流子输运行为[J]. 材料研究学报, 2023, 37(10): 747-758.
[9] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[10] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[11] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[12] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[13] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[14] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[15] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.