Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (5): 461-466    
  研究论文 本期目录 | 过刊浏览 |
超薄SiO2层的化合态结构和厚度
杜汇伟, 沈玲, 丁虎, 杨洁, 赵磊, 马忠权
上海大学理学院物理系索朗光伏材料与器件联合实验室 上海 200444
Compound States Profile and Thickness of Ultra–thin Silicon Dioxide Film
DU Huiwei, SHEN Ling, DING Hu, YANG Jie, ZHAO Lei, MA Zhongquan
SHU-SolarE R&D Lab, Department of Physics, College of Sciences, Shanghai University, Shanghai 200444
引用本文:

杜汇伟 沈玲 丁虎 杨洁 赵磊 马忠权. 超薄SiO2层的化合态结构和厚度[J]. 材料研究学报, 2012, 26(5): 461-466.
DU Huiwei SHEN Ling DING Hu YANG Jie ZHAO Lei MA Zhongquan. Compound States Profile and Thickness of Ultra–thin Silicon Dioxide Film[J]. Chinese Journal of Materials Research, 2012, 26(5): 461-466.

全文: PDF(1204 KB)  
摘要: 

用快速热处理对单面抛光硅片进行初始热氧化, 800℃下在晶硅基表面制备出15, 30和60 min三个时间段的超薄氧化硅层。采用角分辨X射线光电子谱(AR--XPS)技术分别分析了3种初始氧化硅层的厚度和化学组态。结果表明, 这些氧化硅层的主要成分为SiO2, 在过渡区存在的Si2O3、SiO和Si2O不饱和态的含量均小于5%。通过控制氧气的含量, 使氧化厚度只与时间有关。氧化硅层主相SiO2的厚度随时间改变分别为(4.1±0.4) nm, (6.2±0.6) nm和(9.6±0.5) nm。根据SiO2与基底Si的Si2p峰的间距随掠射角度的变化, 推断出厚度为4.1和6.2 nm的SiO2层内的固定正电荷导致n型Si基体能带向上弯曲;而9.6 nm的SiO2层内的固定正电荷分布随着远离界面逐渐减小, 表明固定正电荷主要分布在界面区附近。

关键词 无机非金属材料超薄氧化硅角分辨XPS快速热处理固定表面正电荷    
Abstract

By rapid thermal process, the initial thermal oxidation of single-side polished silicon wafer has been accurately obtained at 800   by oxygen switching for 15, 30 and 60 min oxidation time to form ultra thin silicon oxide layers. The ultra thin silicon oxidation layers were analyzed. The results show that the main composition of these layers is silicon dioxide, and the thicknesses are (4.1±0.4) nm, (6.2±0.6) nm and (9.6±0.5) nm, respectively. The incomplete oxides of Si2O3, SiO and Si2O all less than 5% of total oxidation layer formed at the interface between Si and SiO2. For those silicon oxide layers with the thickness of 4.1 and 6.2 nm, the difference of the binding energy between SiO2 and Si increases with decrease of graze angles, and the kinetic energy of photoelectron is affected by the build-in potential in the surface of the n-type silicon substrate. However, for the layers with 9.6 nm thick silicon oxide, the kinetic energy of photoelectron is dominated by the positive charge in the silicon oxide.

Key wordsinorganic non-metallic materials    ultra-thin silicon oxide    angel-resoved XPS    rapid thermal process    fixed surface positive charge
收稿日期: 2011-11-28     
ZTFLH:  TB321  
基金资助:

国家自然科学基金60876045、上海市基础研究重点项目09JC1405900、上海市重点学科建设基金S30105以及SHU--SOEN's PV联合实验室基金SS--E0700601资助项目。

1 Laegu Kang, Byoung Hun Lee, Wen-Jie Qi, Yongjoo Jeon, Nieh. R, Gopalan. S, Onishi. K, Lee. J.C, Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric, IEEE Electron Device Letters, 21(4), 181(2000)

2 Jan Schmidt, Mark Kerr and Andres Cuevas, Surface passivation of silicon solar cells using plasma-enhanced chemical-vapour-deposited SiN films and thin thermal SiO2/pasma SiN stacks, Semicond. Sci. Technol., 16, 164(2001)

3 Wilson W. Wenas, Syarif Riyadi, Carrier transport in high-efficiency ZnO/SiO2/Si solar cells, Soler Energy Materials & Soalr Cells, 90, 3261(2006)

4 He Bo, Ma Zhongquan, Xu Jing, Zhao Lei, et.al, Realization and characterization of an ITO/AZO/SiO2/p-Si SIS heterojunction, Superlattices and Microstructures, 46, 664(2009)

5 L.Shen, H.W.Du, H.Ding, J.Tang, Z.Q.Ma, Regiondependent behavior of I-V characteristics in n-ZnO:Al/p-Si contacts, Materials Science in Semiconductor Processing, 13(5-6), 339(2011)

6 M.Uematsu, H.Kageshima, K.Shiraishi, Microscopic mechanism of thermal silicon oxide growth, Computational Materials Science, 24, 229(2002)

7 Romuald B. Beck, Formation of ultrathin silicon oxidesmodeling and technological constraints, Materals Science in Semiconductor Processing, 6, 49(2003)

8 H.Cui, C.X.Wang, G.W.Yang, D.Jiang, Origin of unusual rapid oxidation process for ultrathin oxidation of silicon, Applied Physics Letters, 93, 203113(2008)

9 L.Shen, Z.Q.Ma, C.Shen, F.Li, Bo.He, F.Xu, Studies on fabrication and characterization of a ZnO/p-Si-based solar cell, Superlattices and Microstructures, 48, 426(2011)

10 Min Hung Lee, Cheng-Ya Yu, Fon Yuan, K.F. Chen, Chang Chi Lai, and Chee Wee Liu, Reliability improvement of Rapid Thermal Oxide using gas switching, IEEE Transactions on Semiconductor Manufacturing, 16, 4(2003)

11 M.P.Seah, S.J.Spencer, Ultrathin SiO2 on Si IV. Intensity measurement in XPS and deduced thickness linearity, Surf. Interface Anal., 35, 515(2003)

12 Fen Liu, Zhijuan Zhao, Liangzhong Zhao and Hai Wang, Considerations of the intermediate oxides via XPS elemental quantitative analysis for the thickness measurements of ultrathin SiO2 on Si, Surf. Interfac Anal., 43, 1015(2011)

13 Hill J.M., Royce D.G., Fadley C.S. et al. Properties of oixdized silicon as determined by angular dependent Xray photoelectron spectroscopy, Chem. Phys. Lett., 44, 225 (1976)

14 Eugene A. Irene, Ultra-thin SiO2 film studies: index, thickness, roughness and the initial oxidation regime, Solid-State Electronics, 45, 1207(2001)

15 LIU Enke, ZHU Bingsheng, LUO Jinsheng, The Physics of Semiconductors (Beijing, Publishing House of Electronics Industry, 2011) p.258-261

(刘恩科, 朱秉升, 罗晋生, 半导体物理学, 第7版(北京,  电子工业出版社, 2011) p.258-261)

16 K.Hirose, K.Sakano, K.Takahashi, T.Hattori, Characterization of SiO2/Si interfaces by using X-ray photoelectron spectroscopy time-dependent measurement, Surface Science,

507-510, 906(2002)

17 J.E.Demuth, W.J.Thompson, N.J.DiNardo, R.Imbihl, Photoemission-based photovoltage probe of semiconductor surface and interface electronic structure, Phys. Rev. Lett., 56, 1408(1986)

18 K.Z.Zhang, J.N.Greeley, Mark M.Banaszak Holl, The role of extra-atomic relaxation in determining Si 2p bingding energy shifts at silicon/silicon oxide interfaces, J. Appl. Phys., 82, 5(1997)

19 Burak Ulgut, Sefik Suzer, XPS studies of SiO2/Si system under external bias, J. Phys. Chem. B, 107, 2939(2003)

[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.