Please wait a minute...
材料研究学报  2012, Vol. 26 Issue (5): 467-475    
  研究论文 本期目录 | 过刊浏览 |
低合金调质钢在回火过程中的力学性能
王昭东, 王超, 王国栋
东北大学轧制技术及连轧自动化国家重点实验室 沈阳 110819
Mechanical Properties in the Tempering Process of a Low-alloy Quenched and Tempered Steel
WANG Chao, WANG Zhaodong, WANG Guodong
The State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
引用本文:

王昭东 王超 王国栋. 低合金调质钢在回火过程中的力学性能[J]. 材料研究学报, 2012, 26(5): 467-475.
WANG Chao Zhaodong Guodong. Mechanical Properties in the Tempering Process of a Low-alloy Quenched and Tempered Steel[J]. Chinese Journal of Materials Research, 2012, 26(5): 467-475.

全文: PDF(1456 KB)  
摘要: 

研究了回火温度对低合金调质钢力学性能和显微组织的影响。结果表明: 淬火态为具有自回火析出物的板条马氏体, 具有良好的强韧性配合;在250℃左右回火后片状碳化物析出量增加, 提高了屈服强度;在400℃回火后在板条界析出碳化物薄壳, 导致回火脆性现象;高温回火后板条形态仍普遍存在, 局部区域的板条合并成铁素体块晶。在550℃以上回火析出大量纳米碳化物, 渗碳体明显粗化。细晶强化和析出强化是实验钢的主要强化方式。在回火过程中组织演变及析出物性质直接影响拉伸曲线特征和n值。

关键词 金属材料低合金调质钢回火显微组织力学性能    
Abstract

Effect of tempering temperature on mechanical properties and microstructure of a lowalloy quenched and tempered steel was investigated. The results show that the as-quenched status is lath martensite with self-tempered precipitates, which possesses both good strength and toughness. The amount of plate-like precipitates increases when tempered at around 250℃, and the yield strength gets a certain rise thereby. Carbide film precipitated along lath boundaries at 400℃ inducing tempered martensite
embrittlement. The lath morphology still remains generally after high temperature tempering, while laths in some local areas have merged to block ferrite grains. A large amount of nano-scale carbide precipitates was observed above 550℃, and cementite particles were coarsened apparently. Fine grain strengthening and precipitation strengthening are the main strengthening mechanisms of the steel. The microstructure evolvement and precipitation characteristics influence the tensile curve shape and n value directly.

Key wordsmetallic materials    low-alloy quenched and tempered steel    tempering    microstructure    mechanical properties
收稿日期: 2012-06-18     
ZTFLH:  TG142  
基金资助:

国家重点基础研究发展计划2010CB630801资助项目。

1 ZHANG Xiaogang, Development of high strength low alloy steel in recent years, Iron and Steel, 46(11), 1(2011)

(张晓刚, 近年来低合金高强度钢的进展, 钢铁,  46(11), 1(2011))

2 ZHENG Hua, LIU Changming, HAN Rongdong, ZHENG Lin, Determination of Mo content and heat treatment of 960MPa Mo-containing low-carbon steel, Materials for Mechanical Engineering, 34(2), 8(2012))

(郑  华, 刘昌明, 韩荣东, 郑琳, 960MPa级含钼低碳钢钼含量与热处理工艺的确定, 机械工程材料,  34(2), 8(2012))

3 WANG Lijun, CAI Qingwu, YU Wei, WU Huibin, LEI Aidi, Microstructure and mechanical properties of 1500 MPa grade ultra-high strength low alloy steel, Acta Metallurgica Sinica, 46(6), 687(2010)

(王立军, 蔡庆伍, 余 伟, 武会宾, 雷爱娣, 1500MPa级低合金超高强钢的微观组织与力学性能, 金属学报,  46(6), 687(2010))

4 CHEN Bingzhang, ZHU Fuxian, CHEN Yongli, JIN Ru, JIANG Zhonghang, Optimization of controlled rolling and cooling process on low-alloy high-strength quenched and tempered steel, Iron and Steel, 45(6), 88(2010)

(陈炳张, 朱伏先, 陈永利, 金 茹, 姜中行, 低合金高强度调质钢控轧控冷工艺优化, 钢铁, 45(6), 88(2010))

5 YU Hao, ZHANG Daoda, XIAO Rongting, ZHOU Ping, LI Canming, Effect of tempering temperature on the structural properties of precipitates in Q960 steel, Journal of University of Science and Technology Beijing, 33(6), 715(2011)

(于 浩, 张道达, 肖荣亭, 周 平, 李灿明, 回火温度对Q960钢析出物组织特征的影响, 北京科技大学学报,  33(6), 715(2011))

6 Soon Tae Ahn, Dae Sung Kim, Won Jong Nam, Microstructural evolution and mechanical properties of low alloy steel tempered by induction heating, Journal of Materials Processing Technology, 160, 54(2005)

7 YU Wei, QIAN Yajun, WU Huibin, YANG Yuehui, Effect of heat treatment process on properties of 1000 MPa ultra-high strength steel, Journal of Iron and Steel Research, International, 18(2), 64(2011)

8 Woong Seong Chang, Microstructure and mechanical properties of 780 MPa high strength steels produced by direct-quenching and tempering process, Journal of Materials Science, 37, 1973(2002)

9 J.Huang, W.J.Poole, M.Militzer, Austenite formation during intercritical annealing, Metallurgical and Materials Transactions A, 35A, 3363(2004)

10 D.V. Shtansky, K. Nakai, Y. Ohmori, Pearlite to austenite transformation in an Fe–2.6Cr–1C alloy, Acta Materialia, 47(9), 2619(1999)

11 S.Morito, H.Saito, T.Ogawa, T.Furuhara, T.Maki, Effect of austenite grain size on the morphology and crystallograghy of lath martensite in low carbon steels, ISIJ International, 45(1), 91(2005)

12 T.Furuhara, K.Kikumoto, H.Saito, T.Sekine, T.Ogawa, S.Morito, T.Maki, Phase transformation from fine-grained austenite, ISIJ International, 48(8), 1038(2008)

13 QI Jingyuan, LI Yongjun, ZHOU Huijiu, The retained austenite, twinned substructure and auto-tempered carbide in as-quenched low carbon martensite, Transactions of Materials and Heat Treatment, 5(1), 42(1984)

(齐靖远, 黎永钧, 周惠久, 淬火态低碳板条马氏体中的残余奥氏体、孪晶亚结构与自回火碳化物, 材料热处理学报,  5(1), 42(1984))

14 K.Maweja, W.Stumpf, N.van der Berg, Characteristics of martensite as a function of the Ms temperature in low-carbon, Materials Science and Engineering A, 519, 121(2009)

15 G.B. Olson, Morris Cohen, Early stages of aging and tempering of ferrous martensites, Metallurgical Transactions A, 14A, 1057(1983)

16 W.S.Lee, T.T.Su, Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions, Journal of Materials Processing Technology, 87, 198(1999)

17 M.J.Van Genderen, M.Isac, A.Bottger, E.J.Mittemeijer, Aging and tempering behavior of iron-nickel-carbon and iron-carbon martensite, Metallurgical and Materials Transactions A, 28A, 545(1997)

18 XU Zuyao, CAO Siwei, Mechanism of temper martensite embrittlement, Acta Metallurgica Sinica, 23(6), 477(1987)

(徐祖耀, 曹四维, 回火马氏体脆性的机制, 金属学报,  23(6),  477(1987))

19 H.Kitahara, R.Ueji, N.Tsuji, Y.Minamino, Crystallographic features of lath martensite in low-carbon steel, Acta Materialia, 54, 1279(2006)

20 S.Morito, H.Tanaka, R.Konishi, T.Furuhara, T.Maki, The morphology and crystallography of lath martensite in Fe-C alloys, Acta Materialia, 51, 1789(2003)

21 B.P.J.SANDVIK, C.M.Wayman, Characteristics of lath martensite: part I. crystallographic and substructural features, Metallurgical Transactions A, 14A, 809(1983)

22 S.Morito, X.Huang, T.Furuhara, T.Maki, N.Hansen, The morphology and crystallography of lath martensite in alloy  steels, Acta Materialia, 54, 5323(2006)

23 S.Morito, H.Yoshida, T.Maki, X.Huang, Effect of block  size on the strength of lath martensite in low carbon steels, Materials Science and Engineering A, 438-440, 237(2006)

24 R.N.Caron, G.Krauss, The tempering of Fe-C lath martensite, Metallurgical Transactions, 3, 2381(1972)

25 YONG Qilong, The Second Phase in Steels (Beijing, Metallurgical Industry Press, 2006) p.484-507

(雍歧龙,  钢铁材料中的第二相, (北京, 冶金工业出版社, 2006) p.484-507)

26 J.H.Holloman, Tensile deformation, Trans. AIME, 162, 268(1945)

27 Reza Abbaschian, Lara Abbaschian, Robert E. Reed-Hill, Physical Metallurgy Principles, 4th edition (Stamford USA, CENGAGE Learing, 2009) p.639-641

28 J.Pesicka, A.Dronhofer, G.Eggeler, Free dislocations and boundary dislocations in tempered martensite ferritic steels, Materials Science and Engineering A, 387-389, 176(2004)

29 Y.Hosoya, H.Kobayashi, T.Shimomura, K.Matsudo, K.Kurihara, Conf. Proc. on Technology of Continuous Annealed Cold Rolled Sheet Steel, TMS-AIME, 1984, 61-77

30 W.Yan, L.Zhu, W.Sha, Y.Y.Shan, K.Yang, Change of tensile behavior of a high-strength low-alloy steel with tempering temperature, Materials Science and Engineering A, 517, 369(2009)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.