Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (1): 7-12    
  研究论文 本期目录 | 过刊浏览 |
分级氧化铟纳米结构的同质外延生长及发光性能
郭太波,  陈翌庆,  张新华,  刘利柱
合肥工业大学材料科学与工程学院 合肥 230009
Homoepitaxial Growth and Photoluminescence Properties of Hierarchical In2O3 Nanostuctures
GUO Taibo, CHEN Yiqing, ZHANG Xinhua, LIU Lizhu
School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009
引用本文:

郭太波 陈翌庆 张新华 刘利柱. 分级氧化铟纳米结构的同质外延生长及发光性能[J]. 材料研究学报, 2011, 25(1): 7-12.
. Homoepitaxial Growth and Photoluminescence Properties of Hierarchical In2O3 Nanostuctures[J]. Chin J Mater Res, 2011, 25(1): 7-12.

全文: PDF(1037 KB)  
摘要: 用无催化碳热还原法合成了大量三维分级的In2O3亚微/纳米结构, 用XRD、SEM、TEM和EDS等手段对In2O3纳米棒的形貌、成分和结构进行了表征。结果表明: In2O3纳米棒为具有体心立方结构单晶, 沿着<100>和<111>方向外延生长, 属于自组装和气固外延生长机制。同质外延生长的分级结构是``二次成核''和气固生长协同作用造成的。In2O3纳米棒的室温光致发光的发光峰位于386和435 nm, 属于紫外发光和蓝光发光, 分别起源于近带边发射和光生空穴与占据单离子氧空位的电子之间的复合。
关键词 无机非金属材料 氧化铟  纳米结构 分级 同质外延    
Abstract:Large-scale hierarchical In2O3 nanostructures have been synthesized using vapor transport and condensation method without any catalyst, taking advantage of the self-assembly property and epitaxial vapor-solid (VS) growth mechanism, and were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The results show that the In2O3 nanorods are single crystals with body-centered cubic (bcc) structure, epitaxially growing along  <100>  and <111> directions. Homoepitaxial interconnections can be observed at the branched junctions, and the growth process of the nanorods arrayed on the microcrystals is a combination of “secondary nucleation” and VS process. The room-temperature photoluminescence spectrum of In2O3 nanostructures exhibited ultraviolet emission at 386 nm and blue emission at 435 nm, which can be ascribed to the near-band-edge (NBE) emission and the possible recombination of a photo-excited hole with an electron occupying the singly ionized oxygen vacancies, respectively.
Key wordsinorganic non-metallic materials    In2O3     nanostructure    hierarchical    homoepitaxial
收稿日期: 2010-10-26     
ZTFLH: 

O472

 
基金资助:

国家自然科学基金20671027资助项目。

1 C.M.Lieber, Z.L.Wang, Functional Nanowires, MRS Bull., 32, 99(2007)

2 K.G.Gopchandran, B.Joseph, J.T.Abraham, P.Koshy, V.K.Vaidyan, The preparation of transparent electrically conducting indium oxide films by reactive vacuum evaporation, Vacuum, 48, 547(1997)

3 B.X.Li, Y.Xie, M.Jing, G.X.Rong, Y.C.Tang, G.Z.Zhang, In2O3 hollow microspheres: Synthesis from designed In(OH)(3) precursors and applications in gas sensors and photocatalysis, Langmuir, 22, 9380(2006)

4 X.S.Peng, G.W.Meng, J.Zhang, X.F.Wang, Y.W.Wang, C.Z.Wang, L.D.Zhang, Synthesis and photoluminescence of single-crystalline In2O3 nanowires, J. Mater. Chem., 12, 1602(2002)

5 Z.W.Pan, Z.R.Dai, Z.L.Wang, Nanobelts of semiconducting oxides, Science, 291, 1947(2001)

6 Y.F.Hao, G.W.Meng, C.H.Ye, L.D.Zhang, Controlled synthesis of In2O3 octahedrons and nanowires, Cryst. Growth Des., 5, 1617(2005)

7 S.T.Jean, Y.C.Her, Growth mechanism and photoluminescence properties of In2O3 nanotowers, Cryst. Growth Des., 10, 2104(2010)

8 M.R.Shi, F.Xu, controllable synthesis of in2o3 nanocubes, truncated nanocubes, and symmetric multipods, J. Phys. Chem. C, 111, 16267(2007)

9 C.Li, D.H.Zhang, S.Han, Diameter-controlled growth of single- crystalline In2O3 nanowires and their electronic properties, Adv. Materials, 15, 143(2003)

10 K.Hiruma, M.Yazawa, T.Katsuyama, Growth and optical properties of nanometer-scale GaAs and InAs whiskers, Appl. Phys. Rev., 77, 447(1995)

11 Y.J.Zhang, N.L.Wang, S.P.Gao, R.R.He, S.Miao, J.Liu, J.Zhu, X.Zhang, A simple method to synthesize nanowires, Chem. Mater., 14, 3568(2002)

12 Z.Cui, G.W.Meng, W.D.Huang, G.Z.Wang, L.D.Zhang, Preparation and characterization of MgO nanorods, Mater. Res. Bull., 35, 1653(2000)

13 P.Yang, C.M.Lieber, Nanostructured high-temperature superconductors: Creation of strong-pinning columnar defects in nanorod/superconductor composites, J. Mater. Res., 12, 2981(1997)

14 Z.L.Wang, Transmission electron microscopy of shapecontrolled nanocrystals and their assemblies, J. Phys. Chem. B, 104, 1153(2000)

15 K.A.Dick, K.Deppert, M.W.Larsson, T.Martensson, W.Seifert, L.R.Wallenberg, L.Samuelson, Synthesis of branched ’nanotrees’ by controlled seeding of multiple branching events, Nat. Mater., 3, 380(2004)

16 D.Wang, F.Qian, C.Yang, Z.H.Zhong, C.M.Lieber, Rational growth of branched and hyperbranched nanowire Structures, Nano Lett., 4, 871(2004)

17 J.B.Hannon, S.Kodambaka, F.M.Ross, R.M.Tromp, The influence of the surface migration of gold on the growth of silicon nanowires, Nature, 440, 69(2006)

18 S.Kodambaka, J.B.Hannon, R.M.Tromp, F.M.Ross, Control of Si Nanowire growth by oxygen, Nano Lett., 6, 1292(2006)

19 P.X.Gao, Z.L.Wang, Self-assembled nanowire-nanoribbon junction arrays of ZnO, J. Phys. Chem., B, 106, 12653(2002)

20 Y.Ohhata, F.Shinoki, S.Yoshida, Optical properties of r.f. reactive sputtered tin-doped In2O3 films, Thin Solid Films, 59, 255(1979)

21 H.J.Zhou, W.P.Cai, L.D.Zhang, Photoluminescence of indium-oxide nanoparticles dispersed within pores of mesoporous silica, Appl. Phys. Lett., 75, 495(1999)

22 M.S.Lee, W.C.Choi, E.K.Kim, Characterization of the oxidized indium thin films with thermal oxidation, Thin Solid Films, 279, 1(1996)

23 H.Q.Cao, X.Q.Qiu, Y.Liang, Room-temperature ultraviolet emitting In2O3 nanowires. Appl. Phys. Lett., 83, 761(2003)

24 F.Zeng, X.Zhang, J.Wang, L.Wang, L.Zhang, Large-scale growth of In2O3 nanowires and their optical properties, Nanotechnology, 15, 596(2004)

25 L.Dai, X.L.Chen, J.K.Jlan, M.He, T.Zhou, B.Q.Hu, Fabrication and characterization of In2O3 nanowires, Appl. Phys. A, 75, 687(2002)

26 X.C.Wu, J.M.Hong, Z.J.Han, Y.R.Tao, Fabrication and photoluminescence characteristics of single crystalline In2O3 nanowires, Chem. Phy. Lett., 373, 28(2003)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.