Please wait a minute...
材料研究学报  2011, Vol. 25 Issue (1): 13-18    
  研究论文 本期目录 | 过刊浏览 |
氨硼烷低温和室温结构的第一性原理计算
刘超仁, 胡青苗, 王平
中国科学院金属研究所沈阳材料科学国家(联合)实验室 沈阳 110016
First--principles Study of Structure of Ammonia Borane
LIU Chaoren, HU Qingmiao, WANG Ping
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
引用本文:

刘超仁 胡青苗 王平. 氨硼烷低温和室温结构的第一性原理计算[J]. 材料研究学报, 2011, 25(1): 13-18.
, , . First--principles Study of Structure of Ammonia Borane[J]. Chin J Mater Res, 2011, 25(1): 13-18.

全文: PDF(843 KB)  
摘要: 采用第一性原理平面波赝势方法研究了两种氨硼烷结构(Pmn21及P42cm)的晶格参数、电子结构以及动力学性质。结果表明, Pmn21结构的能量低于P42cm结构, 与实验观测结果相符, 即低温相为Pmn21结构而室温相为P42cm结构。Pmn21到P42cm相变所引起的结构变化主要体现为氨硼烷分子间双氢键键长显著增加, 而分子内部化学键键长变化不大。根据电子态密度分析了氨硼烷的成键状态。氨硼烷室温相的XRD图谱和FTIR图谱的理论预测结果与实验结果符合得较好。
关键词 材料科学基础学科   氨硼烷  第一性原理  晶体结构   储氢材料    
Abstract:Two kinds of crystal structures (Pmn21 and P42cm) of (ammonia borane) are studied using first–principles plane wave pseudopotential method based on density functional theory in this paper. It was found that the Pmn21 structure is energetically more stable than the P42cm structure at 0 K. This agrees well with the experimental observation, that lower temperature phase is the Pmn21 structure whereas the room temperature phase is P42cm structure. The structure difference between Pmn21 and P42cm phases manifests itself mainly by the variation of intermolecular bond length whereas the intramolecular bond length remains almost unchanged. Electronic state of density was calculated to identify the bonding nature of ammonia borane. The XRD and FTIR patterns of the P42cm structure were calculated, results agree well with the experimental results of AB at room temperature.
Key wordsfoundational discipline in materials science         ammonia borane     first–principles calculation    crystal structure, hydrogen storage material
收稿日期: 2010-09-15     
ZTFLH: 

TQ116

 
基金资助:

国家重点基础研究发展规划2010CB631305和国家自然科学基金50801059资助项目。

1 M.G.Schultz, T.Diehl, G.P.Brasseur, W.Zittel, Air pollution and climate forcing impacts of a global hydrogen economy, Science, 302(5645), 624(2003)

2 S.Satyapal, J.Petrovic, C.Read, G.Thomas, G.Ordaz, The U.S. department of energys national hydrogen storage project: progress towares meeting hydrogen–powered vehicle

requirements, Catalysis Today, 120(3–4), 246(2007)

3 T.B.Marder, Will we soon be fueling our automobiles with ammonia borane, Angew. Chem., 46(43), 8116(2007)

4 Edited by U.S. department of energy, Washington, DC,P.3.3.(2007) http://www1.eere.energy.gov/ hydrogenandfuelcells/mypp

5 L.Schlapbach , A.Zuttel, Hydrogen storage materials for mobile applications, Nature, 2414(6861), 353(2001)

6 W.Grochala, P.P.Edwards, Thermal decomposition of the non–interstitial hydrides for the storage and production of hydrogen, Chem. Rev., 104(3), 1283(2004)

7 A.M.Seayad, D.M.Antonelli, Recent advances in hydrogen storage in metal containing inorganic nanostructures and related materials, Advanced Materials, 16(9/10), 765(2004)

8 S.Orimo, Y.Nakamori, J.R.Eliseo, A.Zuttel, C.M.Jensen, Complex hydrides for hydrogen storage, Chem. Rev., 107(10), 4111 (2007)

9 P.Wang, X.D.Kang, Hydrogen–rich boron–containing materials for hydrogen storage, Dalton Transactions, 40, 5400(2008)

10 A.Gutowska, L.Li, Y.Shin, C.Wang, X.Li, J.Linehan, R.Smith, B.Kay, B.Schmid, W.Shaw, M.Gutowski, T.Autrey, Nanoscaffold mediates hydrogen release and the reactivity of ammonia borane, Angew. Chem., 44, 23, 3578(2005)

11 TAO Zhanliang, PENG bo, LIANG Jing, CHENG Fangyi, CHEN Jun, Progress in research of high density hydrogen storage materials, Materials China, 28(7–8), 26(2009)

(陶占良, 彭博, 梁 静, 程方益, 陈 军, 高密度储氢材料研究进展, 中国材料进展,  28(7--8), 26(2009))

12 CHEN Jun, ZHU Min, Progress in research of hydrogen storage materials with high capacity, Materials China, 28(5), 2(2009)

(陈军, 朱敏, 高容量储氢材料的研究进展, 中国材料进展,  28(5), 2(2009))

13 F.H.Stephens, V.Pons, R.T.Baker, Ammonia–borane: the hydrogen source par excellence? Dalton Transactions, 2613(2007)

14 Z.Xiong, C.K.Yong, G.Wu, P.Chen, W.Shaw, A.Karkamkar, T.Autrey, M.O.Jones, S.R.Johnson, P.P.Edwards, W.I.F.David, High–capacity hydrogen storage in lithium and sodium amidoboranes, Nature Materials, 7, 138(2008)

15 J.Spielmann, S.Harder, Hydrogen elimination in bulky calcium amidoborane complexes: isolation of a calcium borylamide complex, J. Am. Chem. Soc., 131, 5064 (2009)

16 X.Yang, M.B.Hall, The catalytic dehydrogenation of ammonia–borane involving an unexpected hydrogen transfer to ligated carbine and subsequent carbon–hydrogen activation,

J. Am. Chem. Soc., 130, 1798(2008)

17 M.Ramzan, F.Silvearv, A.Blomqvist, R.H.Scheicher, S.Lebegue, R.Ahuja, Structural and energetic analysis of the hydrogen storage materials LiNH2BH3 and NaNH2BH3 from ab initio calculations, Phys. Rev. B, 79, 132102(2009)

18 H.Wu, W.Zhou, T.Yildirim, Alkali and alkaline–earth metal amidoboranes: structure, crystal chemistry, and hydrogen storage properties, J. Am. Chem. Soc., 130, 14834(2008)

19 R.J.Keaton, J.M.Blacquiere, R.T.Baker, Base metal catalyzed dehydrogenation of ammonia–borane for chemical hydrogen storage, J. Am. Chem. Soc., 129, 1844(2007)

20 A.Feaver, S.Sepehri, P.Shamberger, A.Stowe, T.Autrey, G.Z.Cao, Coherent carbon cryogel–ammonia borane nanocomposites for H2 storage, J. Phys. Ch. B, 111, 7469(2007)

21 M.E.Bluhm, M.G.Bradley, R.Butterick, U.Kusari, L.G.Sneddon, Amineborane–based chemical hydrogen storage: enhanced ammonia borane dehydrogenation in ionic liquids, J. Am. Chem. Soc., 128, 7748(2006)

22 F.H.Stephens, R.T.Baker, M.H.Matus, D.J.Grant, D.A.Dixon, Acid initiation of ammonia–borane dehydrogenation for hydrogen storage, Angew. Chem., 46, 746(2007)

23 D.W.Himmelberger, C.W.Yoon, M.E.Bluhm, Base– promoted ammonia borane hydrogen–release, J. Am. Chem. Soc., 131(39), 14101(2009)

24 G.Wolf, J.C.van Miltenburg, U.Wolf, Thermochemical investigations on borazane(BH3–NH3) in the temperature range from 10 to 289 K, Thermochimica Acta, 317, 111(1998)

25 N.J.Hess, M.E.Bowden, V.M.Parvanov, C.Mundy, S.M.Kathmann, G.K.Schenter, T.Autrey, Spectroscopic studies of the phase transition in ammonia borane: raman spectroscopy of single crystal NH3BH3 as a function of temperature from 88 to 330 K, J. Chem. Phys., 128, 034508(2008)

26 N.J.Hess, G.K.Schenter, M.R.Hartman, L.L.Daemen, T.Proffen, S.M.Kathmann, C.J.Mundy, M.Hartl, D.J.Heldebrant, A.C.Stowe , T.Autrey, Neutron powder diffraction and molecular simulation study of the structural evolution of ammonia borane from 15 to 340K, J. Phys. Ch. A, 113, 5723 (2009)

27 J.B.Yang, J.Lamsal, Q.Cai, W.J.James, W.B.Yelon, Structural evolution of ammonia borane for hydrogen storage, Appl. Phys. L, 92, 091916(2008)

28 YANG Jinbo, Yelon W B, James W J, Neutron diffraction studies of novel complex hydrides, Materials China, 28(12), 15(2009)

(杨金波, Yelon W B, James W J, 新型储氢材料的中子衍射研究, 中国材料进展,  28(12), 15(2009))

29 W.T.Klooster, T.F.Koetzle, P.E.M.Siegbahn, T.B.Richardson, R.H.Crabtree, Study of the N–H–H–B dihydrogen bond including the crystal structure of BHNH by neutron diffraction, J. Am. Chem. Soc., 121, 6337(1999)

30 Y.Lin, W.L.Mao , V.Drozd , J.Chem , L.L.Daemen, Raman spectroscopy study of ammonia borane at high pressure, J. Chem. Phys., 109, 234509(2008)

31 C.F.Hoon, E.C.Reynhardt, Molecular dynamics and structures of amine boranes of the type R3N.BH3. X–ray investigation of H3NBH3 at 295 K and 110 K, Journal of Physics C: Solid State Physics, 16, 32, 6129(1983)

32 E.C.Reynhardt, C.F.Hoon, Molecular dynamics and structures of amine boranes of the type R3N.BH3.NMR investigation of H3NBH3, Journal of Physics C: Solid State Physics, 16, 32, 6137(1983)

33 M.E.Bowden, G.J.Gainsford, W.T.Robinson, Room temperature structure of ammonia borane, Aust. J. Chem., 60, 149(2007)

34 C.Miranda, G.Ceder, Ab initio investigation of ammonia– borane complexes for hydrogen storage, J. Chem. Phys., 126(18), 184703(2007)

35 V.M.Parvanov, G.K.Schenter, N.J.Hess, L.L.Daemen, M.Hartl, A.C.Stowe, D.M.Camaioni, T.Autrey, Materials for hydrogen storage: structure and hynamics of borane ammonia complex, Dalton Transactions, 2008, 4514 

36 C.A.Morrison , M.M.Siddick, Dihydrogen bonds in solid BH3NH3, Angew. Chem., 43, 4780(2004)

37 G.Kress, J.Furthmuller, Efficient iterative schemes for ab initio total–energy calculations using a plane–wave basis set, Phys. Rev. B, 54, 11169(1996)

38 G.Kress, J.Furthmuller, Efficiency of ab–initio total energy calculations for metals and semiconductors using a plane–wave basis set, Comput. Mater. Sci., 6, 15(1996)

39 D.West, S.Limpijumnong, S.B.Zhang, Band structures and native defects of ammonia borane, Phys. Rev. B, 80, 064109(2009)

40 S.M.Lee, X.D.Kang, P.Wang, H.M.Cheng, Y.H.Lee, A comparative study of the structural, electronic, and vibrational properties of NH3BH3 and LiNH2BH3: theory and experiment, Chem. Phys. Chem., 10(11), 1825(2009)
[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[4] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[5] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[6] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[7] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[8] 刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
[9] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[10] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[11] 朱良,王晶,李晓慧,锁红波,张亦良. 基于堆焊成形钛合金高周疲劳实验数据的R-S-N模型[J]. 材料研究学报, 2015, 29(9): 714-720.
[12] 陈杨,钱程,宋志棠,闵国全. 用AFM力曲线技术测定聚合物微球的压缩杨氏模量*[J]. 材料研究学报, 2014, 28(7): 509-514.
[13] 于桂琴,刘建军,梁永民. 胍盐离子液体的合成及其对钢/钢摩擦副的摩擦性能研究*[J]. 材料研究学报, 2014, 28(6): 448-454.
[14] 王效岗,李乐毅,王海澜,周存龙,黄庆学. 双金属复合板材辊式矫直的数值模型*[J]. 材料研究学报, 2014, 28(4): 308-313.
[15] 姚武,吴梦雪,魏永起. 三元复合胶凝体系中硅灰和粉煤灰反应程度的确定*[J]. 材料研究学报, 2014, 28(3): 197-203.