Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (3): 294-298    
  研究论文 本期目录 | 过刊浏览 |
助熔剂BBSZ对M型钡铁氧体的低温共烧改性研究
聂海1,2,  张怀武1, 李元勋1, 凌味未1
1.电子科技大学电子薄膜与集成器件国家重点实验室 成都 610054
2.成都信息工程学院通信工程系微电子实验室 成都 610225
 Modification of the Low-temperature Co-firing Characteristics for M-type Ba-ferrite by Flux BBSZ
NIE Hai 1,2, ZHANG Huaiwu 1, LI Yuanxun 1, LING Weiwei1
1.State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054
2.Microelectronics Lab., Department of Communication Engineering, Chengdu University of Information Technology, Chengdu 610225
引用本文:

聂海 张怀武 李元勋 凌味未. 助熔剂BBSZ对M型钡铁氧体的低温共烧改性研究[J]. 材料研究学报, 2010, 24(3): 294-298.
.  Modification of the Low-temperature Co-firing Characteristics for M-type Ba-ferrite by Flux BBSZ[J]. Chin J Mater Res, 2010, 24(3): 294-298.

全文: PDF(960 KB)  
摘要: 

研究了助熔剂BBSZ对M型钡铁氧体的低温共烧改性。结果表明, 添加适量的BBSZ助烧剂可以使钡铁氧体材料在900℃完成烧结,
所得样品具有较好的致密化结构。当BBSZ的掺入量为2\%时(质量分数), 材料的磁特性较好, 完全实现了M型钡铁氧体的低温烧结, 磁性参数值有一定改善。

关键词 无机非金属材料  低温共烧陶瓷 M型钡铁氧体 助熔剂    
Abstract

The modification of low-temperature co-firing for M-type Ba-ferrite by the addition of BBSZ was investigated. The results showed that the barium ferrites could be sintered completely at 900 ℃ with well densification structures due to the induction of appropriate amount of BBSZ. The optimal amount of BBSZ was 2%, which could guarantee the low-temperature co-firing performances and excellent magnetic performance of the material.

Key wordsinorganic non-metallic materials    LTCC    M-type Ba-ferrite    flux
收稿日期: 2009-11-25     
ZTFLH: 

O482

 
基金资助:

中国博士后科学基金20090450415, 电子薄膜与集成器件国家重点实验室开放基金KFJJ200913, 四川省科技支撑计划项目 2009GZ0168, 及成都信息工程学院引进人才科研启动项目资助。

1 W.Menzel, Interconnects and packaging of millimeter wave circuits, IEEE Topical Symp. Millimeter Waves, Kanagawa, Japan, 55(1997) 2 Kaustav Banerjee, Shukri J. Souri, Pawan Kapur, Krishna C. Saraswat, 3-D ICs: a novel chip design for improving deep-submicrometer interconnects performance and systems-on-chip integration, Proceedings of IEEE, 89(5), 602(2000) 3 John Cocker, Gerard Vanrietvelde, Erich Polzer, Sebastiano Nicotra, Jens Mueller, Axel Brokmeier, Microwave and mm-wave applications: a new challenge for ceramic thick film technology, Proceedings of the IMAPS Conference, 35(2002) 4 R.L.Brown, P.W.Polinski, The integration of passive components into MCMs using advanced low-temperature cofired ceramics, Int. J.Microcirc. Electron. Packag., 328(1993) 5 Tetsuya Osaka, Junichi Sayama, A challenge of new materials for next generations magnetic recording, Electrochimica Acta, 52, 2884(2007) 6 Ugur Topal, Factors influencing the remanent properties of hard magnetic barium ferrite: Impurity phases and grain sizes, Jounal of Magnetism and Magnetic Materials, 320, 331(2008) 7 David Berman, Robert Biskeborn, N.Bui, Ed Childers, R.D.Cideciyan, W.Dyer, Evangelos Eleftheriou, Diana Hellman, R.Hutchins, Wayne Imaino, Glen Jaquette, J.Jelitto, P.-O.Jubert, C.Lo, G.McClelland, S.Narayan, S.Oelcer, T.Topuria, Takeshi Harasawa, Akihiro Hashimoto, Takeshi Nagata, Hiroki Ohtsu, and Shinji Saito, 6.7 GB/in2 recording areal density on barium ferrite tape, IEEE Transactions on Magnetics, 43(8), 3502(2007) 8 A.Ghasemi, A.Hossienpour, A.Morisako, A.Saatchi, M.Salehi, Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrite, Jounal of Magnetism and Magnetic Materials, 302, 439(2006) 9 V.G.Harris, Zhaohui Chen, Yajie Chen, Soack Yoon, Tomokuza Sakai, Anton Gieler, Aria Yang, Yongxue He, K.S.Ziemer, Nian X.Sun and Carmine Vittoria, Bahexaferrite films for next generation microwave devices, Journal of Applied Physics, 99, 08M911(2006) 10 Yajie Chen, Anton L.Geiler, Tomokazu Sakai, Soack D Yoon, Carmine Vittoria, Vincent G Harris, Microwave and magnetic properties of self-biased barium hexaferrite screen printed thick films, Journal of Applied Physics, 99, 08M904(2006) 11 Micheal Richtarsic, Jack Thornron, Characterization and optimization of LTCC for high density large area MCMs, IEEE, 92(1998) 12 Lih-Shan Chen, Shen-LiFu, Yu He, Tsung-Hui Huang, Capacitors embedded in the low temperature Cofired Ceramic, IEEE IEMT/IMC Proceedings, 59(1998) 13 Wing-Yan Leung, Kwok-Keung M. Cheng, Ke-li Wu, Design and implementation of LTCC filters with enhanced stop-band characteristics for bluetooth applications, IEEE, 1008(2001) 14 Jau-Ho Jean, Cheng-Horng Lee, Low-fire NiO-CuO-ZnO ferrite with Bi2O3, Japanese Journal of Applied Physics, 38, 3508(1999)
[1] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[2] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[3] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[4] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[5] 李延伟, 罗康, 姚金环. Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能[J]. 材料研究学报, 2023, 37(6): 453-462.
[6] 余谟鑫, 张书海, 朱博文, 张晨, 王晓婷, 鲍佳敏, 邬翔. N掺杂生物炭的制备及其对Co2+ 的吸附性能[J]. 材料研究学报, 2023, 37(4): 291-300.
[7] 朱明星, 戴中华. SrSc0.5Nb0.5O3 改性BNT基无铅陶瓷的储能特性研究[J]. 材料研究学报, 2023, 37(3): 228-234.
[8] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[9] 周毅, 涂强, 米忠华. 制备方法对磷酸盐微晶玻璃结构和性能的影响[J]. 材料研究学报, 2023, 37(10): 739-746.
[10] 谢锋, 郭建峰, 王海涛, 常娜. ZnO/CdS/Ag复合光催化剂的制备及其催化和抗菌性能[J]. 材料研究学报, 2023, 37(1): 10-20.
[11] 余超, 邢广超, 吴郑敏, 董博, 丁军, 邸敬慧, 祝洪喜, 邓承继. 亚微米Al2O3 对重结晶碳化硅的作用机制[J]. 材料研究学报, 2022, 36(9): 679-686.
[12] 方向明, 任帅, 容萍, 刘烁, 高世勇. 自供能Ag/SnSe纳米管红外探测器的制备和性能研究[J]. 材料研究学报, 2022, 36(8): 591-596.
[13] 李福禄, 韩春淼, 高嘉望, 蒋健, 许卉, 李冰. 氧化石墨烯的变温发光[J]. 材料研究学报, 2022, 36(8): 597-601.
[14] 朱晓东, 夏杨雯, 喻强, 杨代雄, 何莉莉, 冯威. Cu掺杂金红石型TiO2 的制备及其光催化性能[J]. 材料研究学报, 2022, 36(8): 635-640.
[15] 熊庭辉, 蔡文汉, 苗雨, 陈晨龙. ZnO纳米棒阵列和薄膜的同步外延生长及其光电化学性能[J]. 材料研究学报, 2022, 36(7): 481-488.