Please wait a minute...
材料研究学报  2010, Vol. 24 Issue (3): 299-304    
  研究论文 本期目录 | 过刊浏览 |
不同温度下GH690合金断裂韧性及断裂行为
王富强, 王磊, 刘杨, 封辉,  王朋
东北大学材料各向异性与织构教育部重点实验室 沈阳 110819
Fracture Toughness and Fracture Behavior of GH690 Alloy at Different Temperatures
WANG Fuqiang, WANG Lei, LIU Yang, FENG Hui, WANG Peng
引用本文:

王富强 王磊 刘杨 封辉 王朋. 不同温度下GH690合金断裂韧性及断裂行为[J]. 材料研究学报, 2010, 24(3): 299-304.
. Fracture Toughness and Fracture Behavior of GH690 Alloy at Different Temperatures[J]. Chin J Mater Res, 2010, 24(3): 299-304.

全文: PDF(1081 KB)  
摘要: 

选取三点弯曲试样、采用$J$积分方法评价了GH690合金从室温到623 K的断裂韧性,考察了不同温度下合金的断裂行为。结果表明, GH690合金的断裂韧性随着温度的升高而降低。由于室温层错能较低, 合金变形可以通过孪生协调进行, 而形变孪晶诱导裂纹扩展转向,延长了裂纹的扩展路径, 使合金表现为较高的断裂韧性; 随着温度的升高,合金的层错能增加, 形变孪晶生成的机率降低, 裂纹扩展转向减少,导致合金的断裂韧性随之降低。

关键词 金属材料 GH690合金 断裂韧性 形变孪晶 层错能    
Abstract

The fracture toughness and fracture behavior of GH690 alloy were investigated by means of three-point bending tests and the J-integral method in the range of the room temperature to 623 K. The results show that the fracture toughness of the alloy decreases with the increasing of testing temperature. The stacking fault energy of GH690 alloy is low at room temperature and the alloy was deformed by twinning. Deformation twins perpendicular to the main crack could lead to the deflexion of the crack, which is beneficial to the enhancement of the fracture toughness. However, with the testing temperature elevated, the stacking fault energy increases and the number of the deformation twins decreases, allowing
an easier propagation of the crack and is responsible for the decrease of the fracture toughness of GH690
alloy.

Key wordsmetallic materials    GH690 alloy    fracture toughness    deformation twin    stacking fault energy
收稿日期: 2009-12-10     
ZTFLH: 

TG113

 
基金资助:

国家重点基础研究发展计划2006CB605005和长江学者创新团队发展计划IRT0713资助项目。

1 P.Diano, A.Muggeo, J.C.Van Duysen, M.Guttmann, Relationship between microstructure and mechanical properties of Alloy 690 tubes for steam generators, Journal of Nuclear Materials, 168(3), 290(1989) 2 GAO X.S., B.A.Yong, T.S.Srivatsan, J.P.King, The response of alloy 690 tubing in a pressurized water reactor environment, Materials and Design, 28(2), 373(2007) 3 K.Stiller, J.O.Nilsson, K.Norring, Structure, chemistry, and stress corrosion cracking of grain boundaries in alloys 600 and 690, Metallurgical and Materials Transactions A, 27A(2), 327(1996) 4 Seong Sik Hwang, Hong Pyo Kim, Yun Soo Lim, Joung Soo Kim, L.Thomas, Transgranular SCC mechanism of thermally treated alloy 600 in alkaline water containing lead, Corrosion Science, 49(10), 3797(2007) 5 R.A.Page, A.Mcminn, Relative stress corrosion susceptibilities of alloys 690 and 600 in simulated boiling water reactor environments, Metallurgical Transactions A, 17A(5), 877(1986) 6 C.M.Brown, W.J.Mills, Fracture toughness of alloy 690 and EN52 welds in air and water, Metallurgical and Materials Transactions A, 33A(6), 1725(2002) 7 D.M.Symons, Effect of carbide precipitation on the hydrogen-enhanced fracture behavior of alloy 690, Metallurgical and Materials Transactions A, 29A(4),1265(1998) 8 Venkatesh Vasisht, H.J.Rack, Elevated temperature hardening of INCONEL 690, Mechanics of Materials, 30(1), 69(1998) 9 H.B.Park, Y.H.Kim, B.W.Lee, K.S.Rheem, Effect of heat treatment on fatigue crack growth rate of Inconel 690 and Inconel 600, Journal of Nuclear Materials, 231(3), 204(1996) 10 I.A.Choudhury, M.A.El-Baradie, Machinability of nickelbase super alloys: A general review, Journal of Materials Processing Technology, 77(1-3), 278(1998) 11 W.S.Lee, C.Y.Liu, T.N.Sun, Dynamic impact response and microstructural evolution of Inconel 690 superalloy at elevated temperatures, International Journal of Impact Engineering, 32(1-4), 210(2005) 12 G.E.Fuchs, S.Z.Hayden, Microstructure and tensile properties of nitrogen containing vacuum atomized alloy 690, Scripta Metallurgica and Materialia, 25(6), 1483(1991) 13 W.J.Mills, On the relationship between stretch zone formation and the J integral for high strain-hardening materials, Journal of Testing and Evaluation, 9(1), 56(1981) 14 J.F.Breedis, Influence of dislocation substructure on the martensitic transformation in stainless steel, Acta Metallurgica, 13(3), 239(1965) 15 B.X.Huang, X.D.Wang, Y.H.Rong, L.Wang, L.Jin, Mechanical behavior and martensitic transformation of an Fe–Mn–Si–Al–Nb alloy, Materials Science and Engineering A, 438-440, 306(2006) 16 F.Abrassart, Stress-induced γ → α martensitic transformation in two carbon stainless steels. Application to TRIP steels, Metallurgical Transactions A, 4(9), 2205(1973) 17 L.E.Murr, Stacking-fault anomalies and the measurement of stacking-fault free energy in f.c.c. thin films, Thin Solid Films, 4(6), 389(1969) 18 E.M.Lehockey, G.Palumbo, K.T.Aust, U.Erb, P.Lin, On the role of ntercrystalline defects in polycrystal plasticity, Scripta Materialia, 39(3), 341(1998) 19 P.Lin, G.Palumbo, U.Erb, K.T.Aust, Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600, Scripta Metallurgica and Materialia, 33(9), 1387(1995) 20 M.Michiuchi, H.Kokawa, Z.J.Wang, Y.S.Sato, K.Sakai, Twin-induced grain boundary engineering for 316 austenitic stainless steel, Acta Materialia, 54(19), 5179(2006) 21 C.A.Schuh, M.Kumar, W.E.King, Analysis of grain boundary networks and their evolution during grain boundary engineering, Acta Materialia, 51(3), 687(2003)
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.