Please wait a minute...
材料研究学报  2005, Vol. 19 Issue (2): 126-130    
  论文 本期目录 | 过刊浏览 |
在空间质子辐照下甲基硅橡胶的破坏模型
张丽新; 王承民; 何世禹
哈尔滨工业大学; 哈尔滨150001
引用本文:

张丽新; 王承民; 何世禹 . 在空间质子辐照下甲基硅橡胶的破坏模型[J]. 材料研究学报, 2005, 19(2): 126-130.

全文: PDF(581 KB)  
摘要: 利用空间辐照环境地面模拟设备研究了质子辐照对甲基硅橡胶的破坏, 建立了甲基硅橡胶的破坏模型. 结果表明, 在辐照能量为180 keV, 辐照剂量为10-16cm-2的条件下, 被质子辐照后, 硅橡胶生成CH3SiOCH3气体产物; 量子化学计算表明, 在H+直接进攻硅橡胶高分子链中的O导致高分子链断裂的过程中要放热655.34 kJ/mol, 是唯一的放热反应通道. 这一过程不会形成稳定的过渡态和中间体, 而是直接形成断键产物. 计算结果与质子辐照生成的气体产物CH3SiOCH3一致.
关键词 有机高分子材料甲基硅橡胶质子辐照    
Key words
收稿日期: 1900-01-01     
1 T.M.Tritt, Thermoelectrics run hot and cold, Science, 272(5266), 1276(1996)
2 H.J.Goldsmid, G.S.Nolas, A Review of the new thermoelectric materials, Proc.of 20th Inter. Conf. on Thermoelectrics, edited by J.G.Chen, IEEE Inc, Beijing, 1(2001)
3 D.M.Rowe, CRC Handbook of Thtrmoelectrics, (New York, CRC Press, 1995) p. 157
4 B.C.Sales, D.Mandrus, R.K.Williams, Filled skutterudite antimonides: a new class of thermoelectric materials, Science, 272(5266), 1325(1996)
5 T.M.Tritt, thermoelectric material: holey and unholey semiconductors, Science, 283(5403), 804(1999)
6 D.Y.Chung, T.Hogan, P.Brazis, R.L.Melissa, C.Kannewurf, M.Bastea, C.Uher, M.G.Kana-tzidis, CsBi4Te6:A high-performance thermoelectric material for low-temperature applications, Science, 287(5455), 1024(2000)
7 G.A.Slack, V.G.Tsoukala, Some properties of semiconducting IrSb3, J. Appl. Phys., 76(3), 1665(1994)
8 J.L.Cohn, G.S.Nolas, V.Fessatidis, T.H.Metcalf, G.A.Slack, Glass like heat conduction in high-mobility crystalline semiconductors, Phys. Rew. Lett., 82(4), 779(1999)
9 R.Venkatasubramanian,E.Siivola,T.Colpitts, B.O'Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature, 413(6856), 597(2001)
10 V.S.Zemskov, A.D.Belaya, U.S.Beluy, G.N.Kozhemyakin, Growth and investigation of thermoelectric properties of Bi-Sb alloy single crystals, Journal of Crystal Growth, 212(1-2), 161(2000)
11 W.M.Yim, A.Amith, Bi-Sb alloys for magentothermoelectric and thermomagnetic cooling, Solid State Electronics, 15(10), 1141(1972)
12 N.V.C.Shekar, D.A.Polvani, J.F.Meng, J.V.Badding, Improved thermoelectric properties due to electronic topological transition under high pressure, Physica B: Condensed Matter., 358(1-4), 14(2005)
13 D.A.Polvani, J.F.Meng, N.V.Chandra Shekar, J.Sharp, J.V.Badding, Large improvement in thermoelectric properties in pressure-tuned p-type Sb1.5Bi0.5Te3, Chem. Mater.,13(6), 2068(2001)
14 B.Lenoir, M.Cassart, J.P.Michenaud, H.Scherrer, Transport properties of Bi-rich Bi-Sb alloys, J. Phys. Chem. Solid., 57(1), 89(1996)
15 Y.Nishio, T.Hirano, Methods of improving the efficiency of thermoelectric energy conversion and characteristic energy range of carriers, Jpn. Appl. Phys., 36(8), 170(1997)
16 ZHU Pinwen, JIA Xiaopeng, CHEN Haiyong, CHEN Lixue, LI Dongmei, GUO Weili, MA Honggan, REN Guozhong, ZOU Guangtian, PbTe syntheses by highpressure and high-temperature approach, High Pressure Phys., 16, 183(2002) (朱品文,贾晓鹏,陈海勇,陈立学,李冬妹,郭伟力,马红安,任国仲,邹广田,PbTe的高温高压合成,高压物理学报,16, 183(2002))
17 K.Park, J.H.Seo, D.C.Cho, B.H.Choi, C.H.Lee, Thermoelectric properties of p-type Te doped Bi0.5Sb1.5Te3 fabricated by powder extrusion, Mater. Sci. Eng. B, 88(14), 103(2002)
18 J.Seo, K.Park, D.Lee, C.Lee, Thermoelectric properties of hot-pressed n-type Bi2Te2.85Se0.15 compounds doped with SbI3, Mater. Sci. Eng. B, 49, 247(1997)
19 Z.M.Sun, H.Hashimoto, N.Keawprak,A.B.Ma , L.F.Li, M.W.Barsoum, Effect of rotary-die equal channel angular pressing on the thermoelectric properties of a (Bi,Sb)2Te3 alloy, Journal of Materials Research, 20(4), 859(2005)
20 K.Uemura, I.Nishida, Thermoelectric Semiconductors and Their Applications, (Tokyo Nikkan-Kogyo Shinbun Press, 1988), p.145
21 HU Shuhong, ZHAO Xinbing, ZHU Tiejun,Mn15Bi34Te51 and La15Bi34Te51 thermoelectric materials by mechanical alloying, Rare Metal Mater, and Eng., 31, 287 (2002) (胡淑红,赵新兵,朱铁军,机械合金化法制备的Mn15Bi34Te51和La15Bi34Te51热电材料,稀有金属材料工程,31, 287(2002))
22 K.F.Hsu, S.Loo, F.Guo, W.Chen, J.S.Dyck, C.Uher, T.Hogan, E.K.Polychroniadis, M.G.Kanatzidis, Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit, Science, 303(5659), 818(2004)
23 H.Wang. J.F.Li, C.W.Nan, M.Zhou, High-performance Ago(?)Pb18+xSbTe20 thermoelectric bulk materials fabricated by mechanical alloying and spark plasma sintering, Appl. Phys. Lett., 88(9), 405(2006)
24 J.P.Heremans, C.M.Thrush, D.T.Morelli, Thermopower enhancement in PbTe with Pb precipitates, Journal of Applied Physics, 98(6), 063703(2005)
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.