Please wait a minute...
材料研究学报  2005, Vol. 19 Issue (1): 28-34    
  论文 本期目录 | 过刊浏览 |
用固化反应法制备本分醛纤维
刘春玲;郭全贵;史景利;刘朗
中国科学院山西煤炭化学研究所炭材料重点实验室
The curing reaction of phenolic fibers
;;;
中国科学院山西煤炭化学研究所炭材料重点实验室
引用本文:

刘春玲; 郭全贵; 史景利; 刘朗 . 用固化反应法制备本分醛纤维[J]. 材料研究学报, 2005, 19(1): 28-34.
, , , . The curing reaction of phenolic fibers[J]. Chin J Mater Res, 2005, 19(1): 28-34.

全文: PDF(1088 KB)  
摘要: 将热塑性酚醛树脂熔融纺丝, 再在盐酸和甲醛的混合液中进行固化交联反应制备出酚醛纤维, 研究纤维的物理和化学变化. 结果表明, 采用高浓度甲醛能提高交联基团供应体的浓度, 也提高了对初生纤维的溶胀作用; 盐酸不仅是交联反应的催化剂, 也能使酚羟基之间、 酚羟基与亚甲基之间发生热缩聚反应. 对固化反应过程参数的研究表明, 在甲醛浓度18.5\%, 酸浓度12\%和升温速率15.4℃/h时, 在固化反应过程中纤维内部、 外层的交联反应速度与总的交联反应时间达到最佳匹配, 可制备出拉伸强度为260 MPa高度均匀交联的酚醛纤维, 在800℃炭化收率达到63\%.
关键词 有机高分子材料酚醛纤维交联反应    
Abstract:Phenolic fibers were prepared by the cross--linking of heat-meltable spun filaments derived from the melt--spinning of a novolak resin in a combined solution of formaldehyde and hydrochloric acid. The physical and chemical changes of the fibers during curing reaction were investigated. The results show that formaldehyde with high concentration can increase both the content of the crosslinking agent and the swellability with the resin. Hydrochloric acid not only promotes the formation of $^{+}$CH$_{2}$OH as a catalyst, but also leads the polymer branching occurring. It is found that under the conditions of formaldehyde concentration of 18.5\%, hydrochloric acid concentration of 12\%, and the heating rate of 15.4℃/h, the highly homogeneous crosslinking fibers with the maximum tensile strength of the 260 MPa can be obtained, suggesting that the crosslinking rate in both the skin and the inner of the fibers and the curing time are well--matched in these conditions, and the carbon yield of the fibers at 800℃ was 63\%.
Key wordsorganic polymer materials    phenolic fibers    crosslinking reaction
收稿日期: 2005-03-11     
ZTFLH:  TB324  
1 Jong Kyoo Park, Donghwan Cho, Tae Jin Kang, Carbon, 42(4), 5(2004)
2 Donghwan Cho, Byung Il Yoon, Comp Sci Tech, 61(2), 271(2001)
3 Kelly R. Benak, Lourdes Dominguez, James Economy, Christian L. Mangun, Carbon, 40(13), 2323(2002)
4 Hsieh F, Beeson HD, Fire Mater, 21, 41(1997)
5 Tomomi Okuhashi, Yasuaki Watanable, Junji Shimizu, Yuji Umezu, Japan Pat, US Patent, C08g, 3808289,1974
6 A.P.Mouritz, Z.Mathys, C.P.Gardiner, Comp Part B: Eng, In Press
7 Cihat Tascioglu, Barry Goodell, Roberto Lopez-Anido, Michael Peterson, William Halteman Jody Jellison, International Biodeterioration & Biodegradation, 51(3), 157(2003)
8 Nakorn Worasuwannarak, Shin Hatori, Hiroyuki Nakagawa, Kouichi Miura, Carbon, 41(5), 933(2003)
9 R.Imamura, K.Matsui, J.Ozaki, A.Oya, Carbon, 36(7-8), 1243(1998)
10 C.L.Mangun, M.A.Daley, R.D.Braatz, J.Economy, Carbon, 36(1-2), 123(1998)
11 A.Oya, S.YoshidaJ, Alcaniz-MongeA, Linares-Solano, Carbon, 33(8), 1085(1995)
12 A.Oya, S.YoshidaY.Abe, T.Iizuka, N.Makiyam, Carbon, 31(1), 71(1993)
13 Ichiro Tanahashi, Akihiko Yoshida, Atsushi Nishino, Carbon, 29(7), 1033(1991)
14 J.Economy, R.A.Clark, America Pat, U S Paten, 3650102, 1968
15 Pauline J.de Bruyn, Linda M.Foo, Audrey S.C.Lim, Mark G.Looney, David H.Solomon, Tetrahedron, 53(40), 13915(1997)
16 Knopp A, Pilato LA, Phenolic Resins: Chemistry, Application and Performance-Future Direction (New York, Springer, 2000) p.25-67
17 Koichiro Ohtomo, Thuyoshi Nakamori, Japan Pat, U.S.Patent, 3996327, 1976
18 G.Camino, M.P.Luda, L.Costa, L.Trossarelli, Thermal Analysis Vol.Ⅱ (New York, Willey, 1982)p.1137
19 Wang Xiaodong, Zhang Qiang, Chem. J. Chinese Universities, 22, 669(2001) (汪晓东,张强,高等学校化学学报,22,669(2001))
20 C.Morterra, M.J.D.Low, Carbon, 23(5), 525(1985)
21 G.Socrates, Infrared Characteristic Group Frequencies (New York, Willey, 1980)p.67
[1] 叶姣凤, 王飞, 左洋, 张钧翔, 罗晓晓, 冯利邦. 兼具高强度、高韧性和自修复性能的环氧树脂改性热可逆聚氨酯[J]. 材料研究学报, 2023, 37(4): 257-263.
[2] 李瀚楼, 焦晓光, 朱欢欢, 赵晓欢, 矫庆泽, 冯彩虹, 赵芸. 支链含氟聚酯的合成和性能[J]. 材料研究学报, 2023, 37(4): 315-320.
[3] 马逸舟, 赵秋莹, 杨路, 裘进浩. 热塑型聚酰亚胺/聚偏氟乙烯全有机复合薄膜的制备及其介电储能[J]. 材料研究学报, 2023, 37(2): 89-94.
[4] 殷洁, 胡云涛, 刘慧, 杨逸霏, 王艺峰. 基于电沉积技术构建聚苯胺/海藻酸膜及电化学性能研究[J]. 材料研究学报, 2022, 36(4): 314-320.
[5] 申延龙, 李北罡. 磁性氨基酸功能化海藻酸铝凝胶聚合物的制备及对偶氮染料的超强吸附[J]. 材料研究学报, 2022, 36(3): 220-230.
[6] 龙庆, 王传洋. 不同碳黑含量PMMA的热降解行为和动力学分析[J]. 材料研究学报, 2022, 36(11): 837-844.
[7] 蒋平, 吴丽华, 吕太勇, José Pérez-Rigueiro, 王安萍. 蜘蛛大壶状腺丝的反复拉伸力学行为和性能[J]. 材料研究学报, 2022, 36(10): 747-759.
[8] 鄢俊, 杨进, 王涛, 徐桂龙, 李朝晖. 有机硅油改性水性酚醛的制备及其性能[J]. 材料研究学报, 2021, 35(9): 651-656.
[9] 张昊, 李帆, 常娜, 王海涛, 程博闻, 王攀磊. 羧酸型接枝淀粉吸附树脂的制备和对染料的去除性能[J]. 材料研究学报, 2021, 35(6): 419-432.
[10] 孙丽颖, 钱建华, 赵永芳. AgNWs-TPU/PVDF柔性薄膜电容传感器的制备和性能[J]. 材料研究学报, 2021, 35(6): 441-448.
[11] 唐开元, 黄洋, 黄湘舟, 葛颖, 李娉婷, 袁凡舒, 张威威, 孙东平. 碳化细菌纤维素的理化性质及其在甲醇电催化中的应用[J]. 材料研究学报, 2021, 35(4): 259-270.
[12] 苏晨文, 张婷玥, 郭丽伟, 李乐, 杨苹, 刘艳秋. 用于模拟细胞外基质的硫醇-烯水凝胶的制备[J]. 材料研究学报, 2021, 35(12): 903-910.
[13] 张向阳, 章奇羊, 汤涛, 郑涛, 柳浩, 刘国金, 朱海霖, 朱海峰. 基于MOFs的复合材料制备及其对亚甲基蓝染料的吸附性能[J]. 材料研究学报, 2021, 35(11): 866-872.
[14] 万里鹰, 肖洋, 张伦亮. 基于热可逆Diels-Alder动态共价键PU-DA体系的制备和性能[J]. 材料研究学报, 2021, 35(10): 752-760.
[15] 张翠歌, 胡良, 卢祖新, 周佳慧. 基于海藻酸自组装胶体粒子的制备及其乳化性能[J]. 材料研究学报, 2021, 35(10): 761-768.