Please wait a minute...
材料研究学报  2004, Vol. 18 Issue (3): 225-231    
  论文 本期目录 | 过刊浏览 |
LiOH水溶液提高Zr--4合金腐蚀速率的机理
周邦新;刘文庆;李强(上海大学);姚美意
上海大学
Mechanism of LiOH aqueous solution accelerating corrosion rate of zircaloy--4
;;;
上海大学
引用本文:

周邦新; 刘文庆; 李强上海大学; 姚美意 . LiOH水溶液提高Zr--4合金腐蚀速率的机理[J]. 材料研究学报, 2004, 18(3): 225-231.
, , , . Mechanism of LiOH aqueous solution accelerating corrosion rate of zircaloy--4[J]. Chin J Mater Res, 2004, 18(3): 225-231.

全文: PDF(1991 KB)  
摘要: 在不同水化学条件下的高压釜中研究了Zr--4合金在LiOH水溶液中的耐腐蚀性能. 结果表明, 不同的腐蚀介质对氧化膜内的压应力和$t$--ZrO$_{2}$的含量的影响有很大不同; Zr--4合金在LiOH或KOH水溶液中腐蚀时, Li$^{+}$比K$^{+}$进入氧化膜深而且浓度高; 在LiOH水溶液中腐蚀时, 氧化膜中OH$^{-}$的浓度比在KOH水溶液中高. 锆合金在LiOH水溶液中腐蚀时, 氧化膜的生长主要是通过OH$^{-}$从合金的表面向内扩散, 与锆反应生成氧化锆和原子氢. Li$^{+}$半径较小, 容易进入氧化膜, 因此较多的OH$^{-}$进入氧化膜的深处, 并与$t$--ZrO$_{2}$中的氧空位反应, 使$t$--ZrO$_{2}$向$m$--ZrO$_{2}$转变. 这导致氧化膜出现裂纹, 使氧化膜中的压应力松弛, 降低氧化膜的保护能力, 提高了锆合金的腐蚀速率.
关键词 材料失效与保护Zr--4合金耐腐蚀性能    
Abstract:Autoclave experiments in different water chemistry were conducted to clarify the degradation behavior of zircaloy--4 corroded in LiOH aqueous solution. It was found that the compressive stress and the tetragonal zirconia ($t$--ZrO$_{2}$) contents in oxide films formed in different media were different; when specimens were exposed in LiOH and KOH solutions with same concentration, the penetration depth is shallower and the intensity of K$^{+}$ is weaker than those of Li$^{+}$, and the penetration depth of OH$^{-}$ corroded in KOH solution is also shallower than that corroded in LiOH solution. Based on the results, it is suggested that the growth of oxide films is a process of OH$^{-}$ diffusing from outside of oxide into metal/oxide interface and reacting with zirconium to form ZrO$_{2}$ and hydrogen. It is easy for Li$^{+}$ to diffuse into oxide film because of small radius when specimen was exposed in LiOH aqueous solution, so more OH$^{-}$ would diffuse into oxide film deeply. The reaction between adequate OH$^{-}$ and oxygen vacancies in the $t$--ZrO$_{2}$ would promote the transformation from $t$--ZrO$_{2}$ to monoclinic zirconia ($m$--ZrO$_{2}$). The transformation would bring some cracks in the oxide, which relaxed the compressive stress in the oxide, degraded the protective ability of oxide films and caused an enhancement of corrosion rate of zircaloy--4 alloy.
Key wordsmaterials failure and protection    zircaloy-4    corrosion resistance    SIMS    XRD    stress
收稿日期: 2004-07-19     
ZTFLH:  TL341  
1 E.Hillner, J.N.Chirigos, The Effect of Lithium Hydroxide and Related Solution on the Corrosion Rate of Zircaloy in 680````````` F Water, in Report WAPD-TM-307, Bettis Atomic Power Laboratory (West Mifflin, PA, 1962)
2 Brian Cox and Chengguang Wu, Journal of Nuclear Materials, 199, 272(1993)
3 N.Ramasubramanian, P.V.Balakrishnan, Aqueous Chemistry of Lithium Hydroxide and Boric Acid and Corrosion of Zircaloy-4 and Zr-2. 5Nb Alloy, in Zirconium in the Nuclear Industry, Tenth International Symposium, ASTM STP 1245, edited by A. M. Grade and E. R. Bradley (Philadelphia, America Society for Testing and Materials, 1994) p.378
4 D.Pecheur, J.Godlewski, J.Peybernes, L.Fayette, M.Noe, A.Frichet, O.Kerrec, Contribution to the Understanding of the Effect of the Water Chemistry on the Oxidation Kinetics of Zircaloy-4 Cladding, in Zirconium in the Nuclear Industry, Twelfth International Symposium, ASTM STP 1354, edited by G. P. Sabol and. G. D. Moan (West Conshohochen, America Society for Testing and Materials, 2000) p.793
5 ZHOU Bangxin, LI Qiang, HUANG Qiang, Nuclear Power and Engineering, 21(5) , 439(2000) (周邦新,李强,黄强,核动力工程,21(5) ,439(2000) )
6 H.J.Beie, A.Mitwalsky, F.Garzarolli, H.Ruhmann, H.J.Sell, Examinations of the Corrosion Mechanism ofZirconium Alloys, in Zirconium in the Nuclear Industry, Tenth International Symposium, ASTM STP 1245,edited by A. M, Grade and E-R. Bradley (Philadelphia, America Society for Testing and Materials, 1994) p.615
7 Bangxin Zhou, Electron Microscopy Study of Oxide Films Formed on Zircaloy-2 in Superheated Steam, inZirconium in the Nuclear Industry, Eighth International Symposium, ASTM STP 1023, edited by L. F. P.Van Swam and C. M. Eucken (Philadelphia, America Society for Testing and Materials, 1989) p.360
8 J.Godlewski, P.Bouvier and L.Fayette, Stress Distribution Measured by Raman Spectroscopy in Zirconia Films Formed by Oxidation of Zr-Based Alloys, in Zirconium in the Nuclear Industry, Twelfth International Symposium, ASTM STP 1354, edited by G. P. Sabol and. G. D. Moan (West Conshohochen, America Society for Testing and Materials, 2000) p.877
9 Young Suk Kim, Sang Chul Kwon, Journal of Nuclear Materials, 270, 165(1999)
10 T.Sato, M.Shimada, Journal of Materials Science, 20, 3988(1985)
11 Masahiro Yoshimura, Tatsuo Noma, Katsuichi Kawabata, Shigeyuki Somiya, Journal of Materials Science Letter, 6, 465(1987)
12 LI Zhongkui, ZHOU Lian, LIU Jianzhang, ZHANG Jianjun, Rare Metal Materials and Engineer, 30(Suppl.l), 68(2001) (李中奎,周廉,刘建章,张建军,稀有金属材料与工程,30(增刊1) ,68(2001) )
13 XUE Xiangyi, LIU Jianzhang, SONG Qizhong, Rare Metal Materials and Engineer, 25, 33(1996) (薛祥义,刘建章,宋启忠,稀有金属材料与工程,25,33(1996)
14 YANG Fanglin, ZHANG Jianjun, SONG Qizhong, Chinese Journal of Rare Metals, 23, 236(1999) (杨芳林,张建军,宋启忠,稀有金属,23,236(1999)
15 Yong Hwan Jeong, Kyeong Ho Kim and Jong Hyuk Baek, Journal of Nuclear Materials, 275, 221(1999)b
[1] 陈杰, 李红英, 周文浩, 张青学, 汤伟, 刘丹. 热输入对Q1100钢焊接接头低温韧性及耐蚀性能的影响[J]. 材料研究学报, 2022, 36(8): 617-627.
[2] 高巍, 刘江南, 魏敬鹏, 要玉宏, 杨巍. TC4钛合金表面氧化亚铜掺杂微弧氧化层的结构和性能[J]. 材料研究学报, 2022, 36(6): 409-415.
[3] 杨留洋, 谭卓伟, 李同跃, 张大磊, 邢少华, 鞠虹. 利用WBEEIS测试技术对管道缺陷区动态冲刷腐蚀行为的研究[J]. 材料研究学报, 2022, 36(5): 381-391.
[4] 陈铮, 杨芳, 王成, 杜瑶, 卢壹梁, 朱圣龙, 王福会. 惰性无机填料比例和颗粒尺寸对纳米Al/Al2O3 改性有机硅涂料抗高温氧化行为的影响[J]. 材料研究学报, 2022, 36(4): 271-277.
[5] 李玉峰, 张念飞, 刘丽爽, 赵甜甜, 高文博, 高晓辉. 含磷石墨烯的制备及复合涂层的耐蚀性能[J]. 材料研究学报, 2022, 36(12): 933-944.
[6] 陈艺文, 王成, 娄霞, 李定骏, 周科, 陈明辉, 王群昌, 朱圣龙, 王福会. 无机复合涂层对CB2铁素体耐热钢在650℃水蒸气中的防护[J]. 材料研究学报, 2021, 35(9): 675-681.
[7] 唐荣茂, 刘光明, 刘永强, 师超, 张帮彦, 田继红, 甘鸿禹. 用电化学噪声技术研究Q235钢在含氯盐模拟混凝土孔隙液中的腐蚀行为[J]. 材料研究学报, 2021, 35(7): 526-534.
[8] 张大磊, 魏恩泽, 荆赫, 杨留洋, 豆肖辉, 李同跃. 超级铁素体不锈钢表面超疏水结构的制备及其耐腐蚀性能[J]. 材料研究学报, 2021, 35(1): 7-16.
[9] 王冠一, 车欣, 张浩宇, 陈立佳. Al-5.4Zn-2.6Mg-1.4Cu合金板材的低周疲劳行为[J]. 材料研究学报, 2020, 34(9): 697-704.
[10] 黄安然, 张伟, 王学林, 尚成嘉, 范佳杰. 铁素体不锈钢在高温尿素环境中的腐蚀行为研究[J]. 材料研究学报, 2020, 34(9): 712-720.
[11] 公维炜, 杨丙坤, 陈云, 郝文魁, 王晓芳, 陈浩. 扫描电化学显微镜原位观察碳钢涂层缺陷处的交流腐蚀行为[J]. 材料研究学报, 2020, 34(7): 545-553.
[12] 郭铁明, 徐秀杰, 张延文, 宋志涛, 董志林, 金玉花. Q345q桥梁钢和Q345qNH耐候钢在模拟工业大气+除冰盐混合介质中的腐蚀行为[J]. 材料研究学报, 2020, 34(6): 434-442.
[13] 朱金阳, 谭成通, 暴飞虎, 许立宁. 一种新型含AlCr合金钢在模拟油田采出液环境下的CO2腐蚀行为[J]. 材料研究学报, 2020, 34(6): 443-451.
[14] 梁新磊, 刘茜, 王刚, 王震宇, 韩恩厚, 王帅, 易祖耀, 李娜. 氧化石墨烯改性环氧隔热涂层的耐蚀和隔热性能研究[J]. 材料研究学报, 2020, 34(5): 345-352.
[15] 王志虎,张菊梅,白力静,张国君. 水热处理对AZ31镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料研究学报, 2020, 34(3): 183-190.