Please wait a minute...
材料研究学报  2004, Vol. 18 Issue (3): 232-238    
  论文 本期目录 | 过刊浏览 |
等轴晶移动对宏观偏析影响的数值模拟
马长文;沈厚发;黄天佑;柳百成
清华大学机械系焊接馆201
Numerical simulation of macro--segregation with equiaxed grains movement
;;;
清华大学机械系焊接馆201
引用本文:

马长文; 沈厚发; 黄天佑; 柳百成 . 等轴晶移动对宏观偏析影响的数值模拟[J]. 材料研究学报, 2004, 18(3): 232-238.
, , , . Numerical simulation of macro--segregation with equiaxed grains movement[J]. Chin J Mater Res, 2004, 18(3): 232-238.

全文: PDF(1742 KB)  
摘要: 建立了自由等轴晶移动对宏观偏析影响的数学模型, 对铸锭凝固过程中的对流和溶质分布进行了数值模拟. 在模型中按照临界固相分数将糊状区分为紧密树枝晶和自由等轴晶两个不同的区域. 对带冒口铸钢锭的宏观偏析进行了数值模拟, 并同实验结果进行了比较. 与假设糊状区内固相静止的模型相比, 考虑等轴晶移动的模型得到的溶质分布结果与实验结果更接近. 在凝固过程中, 等轴晶随液体流动并在铸锭的底部中心聚集, 在凝固后的铸锭中形成锥形的负偏析. 还发现, 在铸锭的中心靠上的区域形成正偏析, 在铸锭的外部区域形成负偏析.
关键词 材料科学基础学科金属凝固宏观偏析    
Abstract:A mathematical model of equiaxed grains movement and macro--segregation has been built to analyze the fluid flow and species distribution during the metal solidification. The mushy zone was divided into dendrites region and free equiaxed grains region by the dendritic coherency point. Macro--segregation of a steel ingot in a rectangular mold with a riser was simulated and the calculation result was compared with that of an experiment. It shows that the species distribution obtained by the grain movement model is more consistent with experiment comparing to that by the solid skeleton model in mush. The equiaxed grains move with the fluid and accumulate at the bottom center of the ingot during solidification. The cone--shape negative segregation forms after solidification. The positive segregation in the upper center and the negative segregation in the exterior region of the ingot are found at the same time.
Key wordsfoundational discipline in materials    metal solidification    macro-segregation    numerical simulation    fre
收稿日期: 2004-07-19     
ZTFLH:  TG111  
1 K.P.Mingard, B.Cantor, I.G.Palmer, Acta Materialia, 48(10) , 2435(2000)
2 A.Mouchmov, V.R.Voller, M.Cross, Macro-Segregation of Multi-Component Alloys in Shape Casting Simulation, Modeling of Casting, Welding and Advanced Solidification Processes, Engineering Conference International, (Destin, V.S., Minerals, Metals and Material Society, 2003) p.277
3 J.P.Gu, C.Beckermann, Metall. Trans. A, 30(5) , 1357(1999)
4 J.Ni, C.Beckermann, Metall. Trans. B, 22B(4) , 349(1991)
5 W.D.Bennon, F.P.Incropera, Int. J. Heat Mass Transfer, 30, 2161(1987)
6 W.D.Bennon, F.P.Incropera, Int. J. Heat Mass Transfer, 30, 2171(1987)
7 W.F.A.Boehmer, M.C.Schneider, C.Beckermann, Combined Experimental and Numerical Investigation of the Formation of Macrosegregation during Multicomponent Steel Solidification, in Proceedings of the 1995 7th Conference on Modeling of Casting, Welding and Advanced Solidification Processes, Minerals, Metals & Materials Soc, edited by TMS (1995) p.617
8 M.C.Schneider, C.Beckermann, Simulation of Micro-/Macrosegregation during the Solidification of a Low-Alloy Steel, ISIJ International, 35, 665(1995)
9 M.C.Schneider, C.Beckermann, Metall. Trans. A, 26A(9) , 2373(1995)
10 DU Qiang, LI Dianzhong, LI Yiyi, Acta Metallurgica Sinica, 36(11) , 1197(2000) (杜强,李殿中,李依依,金属学报,36(11) ,1197(2000) )
11 HAN Zhiqiang, SHEN Houfa, LIU Baicheng, Acta Metallurgica Sinica, 38(1) , 35(2002) (韩志强,沈厚发,柳百成,金属学报,38(1) ,35(2002) )
12 C.Beckermann, Modeling of Macrosegregation: Past, Present, and Future, Presentation at TMS/MIT Flemings Symposium, (Cambridge, U.S., Minerals Metals and Materials Society, 2000) p.297
13 L.Arnberg, G.Chai, L.Backerud, Mater. Sci. Eng. A, 173, 101(1993)
14 O.J.Ilegbusi, J. Mater. Eng. Performance, 5, 117(1996)
15 S.V.Patankar, Numerical Heat Transfer and Fluid Flow(New York: Hemisphere, 1980)
16 MA Changwen, SHEN Houfa, HUANG Tianyou, LIU Baicheng, Numerical Simulation on Macro-Segregation and Thermo-Solutal Convection during Solidification, in The Second Korean-Sino Conference on Advance Metal Processing Technology, edited by Choi JK (2002) p.20
[1] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[2] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[3] 孙艺, 韩同伟, 操淑敏, 骆梦雨. 氟化五边形石墨烯的拉伸性能[J]. 材料研究学报, 2022, 36(2): 147-151.
[4] 谢明玲, 张广安, 史鑫, 谭稀, 高晓平, 宋玉哲. Ti掺杂MoS2薄膜的抗氧化性和电学性能[J]. 材料研究学报, 2021, 35(1): 59-64.
[5] 岳颗, 刘建荣, 杨锐, 王清江. Ti65合金的初级蠕变和稳态蠕变[J]. 材料研究学报, 2020, 34(2): 151-160.
[6] 鲁效庆,张全德,魏淑贤. A-π-D-π-A型吲哚类染料敏化剂的光电特性[J]. 材料研究学报, 2020, 34(1): 50-56.
[7] 李学雄,徐东生,杨锐. 钛合金双态组织高温拉伸行为的晶体塑性有限元研究[J]. 材料研究学报, 2019, 33(4): 241-253.
[8] 刘庆生, 曾少军, 张丹城. 基于细观结构的阴极炭块钠膨胀应力数值分析及实验验证[J]. 材料研究学报, 2017, 31(9): 703-713.
[9] 马志军, 莽昌烨, 王俊策, 翁兴媛, 司力玮, 关智浩. 三种金属离子掺杂对纳米镍锌铁氧体吸波性能的影响[J]. 材料研究学报, 2017, 31(12): 909-917.
[10] 黄莉. 石蜡/水相变乳液的稳定性能和储能容量[J]. 材料研究学报, 2017, 31(10): 789-795.
[11] 朱良,王晶,李晓慧,锁红波,张亦良. 基于堆焊成形钛合金高周疲劳实验数据的R-S-N模型[J]. 材料研究学报, 2015, 29(9): 714-720.
[12] 陈杨,钱程,宋志棠,闵国全. 用AFM力曲线技术测定聚合物微球的压缩杨氏模量*[J]. 材料研究学报, 2014, 28(7): 509-514.
[13] 于桂琴,刘建军,梁永民. 胍盐离子液体的合成及其对钢/钢摩擦副的摩擦性能研究*[J]. 材料研究学报, 2014, 28(6): 448-454.
[14] 王效岗,李乐毅,王海澜,周存龙,黄庆学. 双金属复合板材辊式矫直的数值模型*[J]. 材料研究学报, 2014, 28(4): 308-313.
[15] 姚武,吴梦雪,魏永起. 三元复合胶凝体系中硅灰和粉煤灰反应程度的确定*[J]. 材料研究学报, 2014, 28(3): 197-203.