Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (9): 713-720    DOI: 10.11901/1005.3093.2022.482
  研究论文 本期目录 | 过刊浏览 |
热挤压钛/钢复合管的微观组织和性能
潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚()
安徽工业大学冶金工程学院 马鞍山 243002
Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion
PAN Xinyuan, JIANG Jin, REN Yunfei, LIU Li, LI Jinghui, ZHANG Mingya()
School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243002, China
引用本文:

潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
Xinyuan PAN, Jin JIANG, Yunfei REN, Li LIU, Jinghui LI, Mingya ZHANG. Microstructure and Property of Ti / Steel Composite Pipe Prepared by Hot Extrusion[J]. Chinese Journal of Materials Research, 2023, 37(9): 713-720.

全文: PDF(12424 KB)   HTML
摘要: 

以低碳钢Q235为内管、以工业纯钛TA2为复管,用热挤压工艺制备了钛/钢复合管,使用金相显微镜、场发射扫描电子显微镜、X射线衍射仪、显微硬度仪和纳米压痕等手段对其表征,研究了这种钛/钢复合管的力学性能与结合界面微观组织的关系。结果表明,钛/钢复合管的外径为22 mm,内外壁厚分别为2.8 mm和0.4 mm,复合界面结合良好,界面内的主要物相为α-Fe、α-Ti、TiC及Fe2Ti;高温挤压使钛/钢复合管结合界面处的位错密度提高和晶粒明显细化,复合管钛侧的晶粒细化程度比基材钢侧的高,界面晶粒的平均尺寸为1.5 μm。加工硬化和高温热挤压使钛/钢结合界面的硬度提高,界面结合处的硬度最大。低温退火削弱了钛/钢复合管的加工硬化程度,提高了界面材料的刚度,而对界面金属间化合物生成的反应层的影响较小。

关键词 复合材料热挤压钛/钢复合管显微组织力学性能    
Abstract

The titanium/steel composite pipe was prepared by hot extrusion at 1000℃ with low carbon steel Q235 as inner pipe and commercial pure titanium TA2 as cladding. The effect of interface microstructure on mechanical properties of titanium/steel composite pipe was studied by using metallographic microscope, field emission scanning electron microscope, X-ray diffractometer, microhardness tester and nano-indentation technology. The results show that the outer diameter of the extruded titanium/steel composite pipe is 22 mm, the inner and outer wall thicknesses are 3 mm and 0.2 mm respectively, the interface of steel/Ti pipes is well bonded, and the main phase of the interface is α-Fe, α-Ti, TiC and Fe2Ti, etc. The grain at the interface junction of the hot extruded Ti clad steel pipe is obviously refined, and the average grain size of the interface is 1.5 μm. The grain refinement of the Ti side of the composite is higher than that of the steel side. At the same time, under high temperature hot extrusion, the dislocation density at the bonding interface of the clad pipe increases, the grains are refined, and the microhardness is also improved. Low temperature annealing has different effects on the mechanical properties of both sides of titanium/steel composite interface, weakens the work hardening degree of titanium/steel composite pipe, improves the stiffness of interface material, and has little effect on the reaction layer formed by interface intermetallic compound.

Key wordscomposite    hot extrusion    titanium/steel composite pipe    microstructure    mechanical property
收稿日期: 2022-09-07     
ZTFLH:  TG376.2  
基金资助:冶金工程与资源综合利用安徽省重点实验室开放基金(SKF22-04);安徽高校自然科学基金(KJ2020A0272)
通讯作者: 张明亚,副教授,ahutzmh@163.com,研究方向复合材料加工成型及性能
Corresponding author: ZHANG Mingya, Tel: 18855579770, E-mail: ahutzmh@163.com
作者简介: 潘新元,男,1997年生,硕士
MaterialsONCSiSPMnFeTi
TA20.1260.010.01----0.06Bal.
Q235--0.220.350.0450.0451.4Bal.-
表1  TA2和Q235的化学成分
图1  钢/钛管界面的原始组织照片
图2  热挤压制备钛/钢复合管的工艺流程
图3  钛/钢复合管界面组织的EBSD图像
图4  钛/钢复合管界面的SEM图像和EDS能谱
图5  钛/钢复合管剥离界面的XRD谱
图6  钛/钢复合界面的硬度分布和界面反应层的形成机理. D为挤压态样品,T为退火态样品
图7  钛/钢复合界面的纳米压痕测试结果
1 Bae D S, Chae Y R, Lee S P, et al. Effect of post heat treatment on bonding interfaces in Ti/Mild steel/Ti clad materials [J]. Procedia Eng., 2011, 10: 996
doi: 10.1016/j.proeng.2011.04.164
2 Ha J S, Hong S I. Design of high strength Cu alloy interlayer for mechanical bonding Ti to steel and characterization of their tri-layered clad [J]. Mater. Des., 2013, 51: 293
doi: 10.1016/j.matdes.2013.04.068
3 Su H, Luo X B, Chai F, et al. Manufacturing technology and application trends of titanium clad steel plates [J]. J. Iron Steel Res. Int., 2015, 22(11): 977
doi: 10.1016/S1006-706X(15)30099-6
4 Kundu S, Sam S, Chatterjee S. Interface microstructure and strength properties of Ti-6Al-4V and microduplex stainless steel diffusion bonded joints [J]. Mater. Des., 2011, 32(5): 2997
doi: 10.1016/j.matdes.2010.12.052
5 Sun H Y, Zhao J, Liu Y A, et al. Effect of C addition on microstructure and mechanical properties of Ti-V-Cr burn resistant titanium alloys [J]. Chin. J. Mater. Res., 2019, 33(7): 537
doi: 10.11901/1005.3093.2019.090
5 孙欢迎, 赵 军, 刘翊安 等. C含量对Ti-V-Cr系阻燃钛合金微观组织和力学性能的影响 [J]. 材料研究学报, 2019, 33(7): 537
doi: 10.11901/1005.3093.2019.090
6 Kundu S, Chatterjee S. Diffusion bonding between commercially pure titanium and micro-duplex stainless steel [J]. Mater. Sci. Eng., 2008, 480A(1-2) : 316
7 Hao X, Dong H, Xia Y, et al. Microstructure and mechanical properties of laser welded TC4 titanium alloy/304 stainless steel joint with (CoCrFeNi)100- x Cu x highentropy alloy interlayer [J]. J. Alloys Compd., 2019, 803: 649
doi: 10.1016/j.jallcom.2019.06.225
8 Xia Y Q, Dong H G, Hao X H, et al. Vacuum brazing of Ti6Al4V alloy to 316L stainless steel using a Ti-Cu-based amorphous filler metal [J]. J. Mater. Process. Technol., 2019, 269: 35
doi: 10.1016/j.jmatprotec.2019.01.020
9 Zhou G S. The analysis for the manufacturing techniques of titanium tube and titanium clad Tubesheet [J]. China Chem. Ind. Equip., 2008, 10(4): 22
9 周国顺. 钛管和钛钢复合管板的制造技术浅析 [J]. 中国化工装备, 2008, 10(4): 22
10 Yu C, Qi Z C, Yu H, et al. Microstructural and mechanical properties of hot roll bonded titanium Alloy/Low carbon steel plate [J]. J. Mater. Eng. Perform., 2018, 27(4): 1664
doi: 10.1007/s11665-018-3279-9
11 Chen L S, Zhang X L, Zheng X P, et al. Research status of bimetal laminated composite plate prepared by rolling process [J]. Rare Met. Mater. Eng., 2018, 47(10): 3243
11 陈连生, 张鑫磊, 郑小平 等. 轧制双金属复合板材的研究现状 [J]. 稀有金属材料与工程, 2018, 47(10): 3243
12 Zhou Q, Liu R, Zhou Q, et al. Microstructure characterization and tensile shear failure mechanism of the bonding interface of explosively welded titanium-steel composite [J]. Mater. Sci. Eng., 2021, 820A: 141559
13 Mousavi S A A A, Sartangi P F. Effect of post-weld heat treatment on the interface microstructure of explosively welded titanium–stainless steel composite [J]. Mater. Sci. Eng., 2008, 494A(1-2) : 329
14 Zhang Y, Sun D Q, Gu X Y, et al. Nd:YAG pulsed laser welding of TC4 Ti alloy to 301L stainless steel using Ta/V/Fe composite interlayer [J]. Mater. Lett., 2018, 212: 54
doi: 10.1016/j.matlet.2017.10.057
15 Bai Y L, Liu X F, Wang W J, et al. Current status and research trends in processing and application of titanium/steel composite plate [J]. Chin. J. Eng., 2021, 43(1): 85
15 白于良, 刘雪峰, 王文静 等. 钛/钢复合板及其制备应用研究现状与发展趋势 [J]. 工程科学学报, 2021, 43(1): 85
16 Luo R X. Study on extrusion forming technique for bimetal-lined pipe [J]. Hot Work. Technol., 2010, 39(13): 87
16 骆瑞雪. 双金属复合管的挤压成形工艺研究 [J]. 热加工工艺, 2010, 39(13): 87
17 Tian F, Li B, Zhou W M. Ultrasonic interface wave for interlaminar crack detection in steel-titanium composite pipe [J]. J. Pressure Vessel Technol., 2019, 141(4): 041401
18 Wang F L, Sheng G M, Deng Y Q. Impulse pressuring diffusion bonding of titanium to 304 stainless steel using pure Ni interlayer [J]. Rare Met., 2016, 35: 331
doi: 10.1007/s12598-014-0368-2
19 Fan J H, Li P F, Liang X J, et al. Interface evolution during rolling of Ni-clad stainless steel plate [J]. Chin. J. Mater. Res., 2021, 35(7): 493
19 范金辉, 李鹏飞, 梁晓军 等. 镍-不锈钢复合板轧制过程中界面的结合机制 [J]. 材料研究学报, 2021, 35(7): 493
20 Zhang B Q. Manufacturing technology of duplex metal pipe [J]. Mech. Electr. Eng. Technol., 2009, 38(3): 106
20 张宝庆. 双金属复合管的制造技术浅析 [J]. 机电工程技术, 2009, 38(3): 106
21 Yu C, Wu Z H, Guo Z X, et al. Microstructure and properties of hot-rolled bonded titanium clade steel plate [J]. Iron Steel, 2018, 53(4): 42
21 余 超, 吴宗河, 郭子楦 等. 热轧钛/钢复合板显微组织和性能 [J]. 钢铁, 2018, 53(4): 42
22 Cao M, Deng K K, Nie K B, et al. Microstructure, mechanical properties and formability of Ti/Al/Ti laminated composites fabricated by hot-pressing [J]. J. Manuf. Process., 2020, 58: 322
doi: 10.1016/j.jmapro.2020.08.013
23 Gao Y D, Zhou J P, Zhang Y, et al. Two pass laser welding of TC4 titanium alloy and 304 stainless steel using TA2/Q235 composite interlayer [J]. Mater. Lett., 2019, 255: 126521
doi: 10.1016/j.matlet.2019.126521
24 Bai Y L, Liu X F, Shi Z Z. Stress-induced alternating microstructures of titanium/steel bonding interface [J]. Mater. Lett., 2021, 298: 130019
doi: 10.1016/j.matlet.2021.130019
25 Momono T, Enjo T, Ikeuchi K. Effects of carbon content on the diffusion bonding of iron and steel to titanium [J]. ISIJ Int., 1990, 30(11): 978
doi: 10.2355/isijinternational.30.978
26 Chai X Y, Shi Z R, Chai F, et al. Effect of heating temperature on microstructure and mechanical properties of titanium clad steel by hot roll bonding [J]. Rare Met. Mater. Eng., 2019, 48(8): 2701
26 柴希阳, 师仲然, 柴 锋 等. 加热温度对轧制钛/钢复合板组织与性能的影响 [J]. 稀有金属材料与工程, 2019, 48(8): 2701
27 Wu C J, Chen G L, Qiang W J, et al. Metallic Materials. 2nd ed. [M]. Beijing: Metallurgical Industry Press, 2009: 9
27 吴承建, 陈国良, 强文江 等. 金属材料学(第2版). [M]. 北京: 冶金工业出版社, 2009: 9
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[3] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[4] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[5] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[6] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[7] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[8] 冯叶, 陈志勇, 姜肃猛, 宫骏, 单以银, 刘建荣, 王清江. 一种NiCrAlSiY涂层对Ti65钛合金板材循环氧化和室温力学性能的影响[J]. 材料研究学报, 2023, 37(7): 523-534.
[9] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[10] 史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
[11] 雷志国, 文胜平, 黄晖, 张二庆, 熊湘沅, 聂祚仁. 冷轧变形和添加SiAl-2Mg-0.8Cu(-Si)合金的组织和力学性能的影响[J]. 材料研究学报, 2023, 37(6): 463-471.
[12] 张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
[13] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[14] 姜水淼, 明开胜, 郑士建. 晶界偏析以及界面相和纳米晶材料力学性能的调控[J]. 材料研究学报, 2023, 37(5): 321-331.
[15] 陈志鹏, 朱智浩, 宋梦凡, 张爽, 刘田雨, 董闯. 基于Ti-6Al-4V团簇式设计的超高强Ti-Al-V-Mo-Nb-Zr合金[J]. 材料研究学报, 2023, 37(4): 308-314.