Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (7): 495-501    DOI: 10.11901/1005.3093.2022.109
  研究论文 本期目录 | 过刊浏览 |
稀土元素对低碳钢中奥氏体-铁素体相变动力学的影响
郭飞1,2, 郑成武1,2, 王培1,2(), 李殿中1,2
1.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels
GUO Fei1,2, ZHENG Chengwu1,2, WANG Pei1,2(), LI Dianzhong1,2
1.Institute of Metal Research, Chinese Academy of Sciences; Shenyang National Laboratory for Materials Science, Shenyang, 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang, 110016, China
引用本文:

郭飞, 郑成武, 王培, 李殿中. 稀土元素对低碳钢中奥氏体-铁素体相变动力学的影响[J]. 材料研究学报, 2023, 37(7): 495-501.
Fei GUO, Chengwu ZHENG, Pei WANG, Dianzhong LI. Effect of Rare Earth Elements on Austenite-Ferrite Phase Transformation Kinetics of Low Carbon Steels[J]. Chinese Journal of Materials Research, 2023, 37(7): 495-501.

全文: PDF(15251 KB)   HTML
摘要: 

使用热膨胀仪等手段研究了稀土对Fe-C和Fe-C-Si-Mn低碳钢连续冷却过程奥氏体-铁素体相变温度和等温过程相变动力学的影响。结果表明,添加微量的RE元素可显著降低连续冷却过程中先共析铁素体相变的开始点温度。同时,添加微量稀土还能改变等温过程中的铁素体相变动力学:RE元素通过抑制碳扩散减缓了Fe-C-(RE)合金整个相变过程的相变速率;而对于Fe-C-Si-Mn合金,RE通过抑制C元素扩散和改变晶界能的双重作用,使其相变孕育期延长和相变初始阶段速率降低,但是提高了相变中后期的速率。

关键词 金属材料相图与相变低碳钢奥氏体-铁素体相变动力学稀土元素    
Abstract

With the increasing cleanliness of steels in recent years, it has made possible for making micro-alloyed steels with rare earth elements. It is found that the addition of rare earths has a significant effect on the solid-state phase transformation behavior of steels, especially for low-carbon low-alloy steels. The effectiveness in modifying the inclusions and inducing nucleation by RE addition has been studied intensively and approved substantially. Whereas, the micro-alloying effect of RE on the ferrite phase transformation of steel is still unclear. The effect of rare earth elements (RE) on austenite-ferrite transformation temperature during continuous cooling, and the isothermal transformation kinetics of Fe-C alloys and Fe-C-Si-Mn low carbon steels has been investigated in this article. It is found that a tiny amount of RE addition can reduce the starting point temperature of proeutectoid ferrite during continuous cooling. Additionally, the addition of RE also changes the ferrite transformation kinetics in the isothermal process: for Fe-C-(RE) alloys, the addition of RE slows down the transformation rate during the whole transformation process due to the pinning carbon diffusion effect; For Fe-C-Si-Mn alloys, RE elements can play a double role of pinning carbon diffusion and changing grain boundary energy, and then prolong the incubation period and decreases the rate of phase transformation during the initial stage, while increase the phase transformation rate during the middle and late of phase transformation.

Key wordsmetallic materials    phase diagram and phase transformation    low-carbon steels    austenite ferrite phase transformation kinetics    rare-earth element
收稿日期: 2022-02-23     
ZTFLH:  TG142  
基金资助:国家自然科学基金(52031013)
通讯作者: 王培,研究员,pwang@imr.ac.cn,研究方向为材料微观组织与宏观力学性能关系
Corresponding author: WANG Pei, Tel: (024)23970106, E-mail: pwang@imr.ac.cn
作者简介: 郭飞,男,1992年生,博士生
SamplesCSiMnRE (La+Ce)OSPFe
Fe-C0.14--00.0008<0.00050.002Bal.
Fe-C-RE0.14--0.0290.0005<0.00050.003Bal.
Fe-C-Si-Mn0.180.251.6600.00040.0010.004Bal.
Fe-C-Si-Mn-RE0.190.251.640.0360.00050.0010.004Bal.
表1  Fe-C-(RE)和Fe-C-Si-Mn-(RE)合金试样的化学成分
图1  实验用钢的初始显微组织
图2  基于热膨胀实验的热处理工艺示意图
图3  固溶RE对Fe-C合金和Fe-C-Si-Mn低碳钢中先共析铁素体相变开始温度点的影响
图4  Fe-C-(RE)合金铁素体等温相变动力学曲线和铁素体相变速率与时间的关系
图5  Fe-C-Si-Mn-(RE)合金铁素体等温相变动力学曲线和铁素体相变速率与时间的关系
图6  等温相变不同时间后试样的显微组织
1 Ma Q Q, Wu C C, Cheng G G, et al. Characteristic and formation mechanism of inclusions in 2205 duplex stainless steel containing rare earth elements [J]. Mater. Today., 2015, 2: 300
2 Liu C, Revilla R I, Liu Z, et al. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel [J]. Corros. Sci., 2017, 129: 82
doi: 10.1016/j.corsci.2017.10.001
3 Yang C Y, Luan Y K, Li D Z, et al. Effects of rare earth elements on inclusions and impact toughness of high-carbon chromium bearing steel [J]. J. Mater. Sci. Technol., 2019, 35(7): 1298
doi: 10.1016/j.jmst.2019.01.015
4 Jiang Z H, Wang P, Li D Z, et al. Effects of rare earth on microstructure and impact toughness of low alloy Cr-Mo-V steels for hydrogenation reactor vessels [J]. J. Mater. Sci. Technol., 2020, 45: 1
doi: 10.1016/j.jmst.2019.03.012
5 Gui W M, Liu Y, Zhang X T, et al. Effect of rare earth addition on microstructure, mechanical property and nitriding performance of a medium carbon steel [J]. Chin. J. Mater. RES., 2021, 35(1): 72
doi: 10.11901/1005.3093.2020.203
5 桂伟民, 刘 义, 张晓田 等. 稀土元素对中碳钢组织、力学性能和渗氮的影响 [J]. 材料研究学报, 2021, 35(1): 72
doi: 10.11901/1005.3093.2020.203
6 Wang Y J, Chen J G, Yang J, et al. Effect of La2O3 on granular bainite microstructure and wear resistance of hardfacing layer metal [J]. J. Rare Earths., 2014, 32(1): 83
doi: 10.1016/S1002-0721(14)60036-3
7 Pan F, Zhang J, Chen H L, et al. Effects of rare earth metals on steel microstructures [J]. Materials, 2017, 9(6): 1
doi: 10.3390/ma9010001
8 Adabavazeh Z, Hwang W S, Su Y H. Effect of adding cerium on microstructure and morphology of Ce-based inclusions formed in low-carbon steel [J]. Sci. Rep., 2017, 7: 46503
doi: 10.1038/srep46503 pmid: 28485376
9 Maloney J L, Garrison W M. The effect of sulfide type on the fracture behavior of HY180 steel [J]. Acta. Mater., 2005, 53(2): 533
doi: 10.1016/j.actamat.2004.09.041
10 Opiela M, Grajcar A. Modification of non-metallic inclusions by rare earth elements in micro-alloyed Steels [J]. Arch. Foundry Eng., 2012, 12(2): 129
11 Li D Z, Wang P, Chen X Q, et al. Low oxygen rare earth steels [J]. Nat. Mater. (under revise)
12 Liang Y L, Yi Y L, Long S L, et al. Effect of rare earth elements on isothermal transformation kinetics in Si-Mn-Mo bainite steels [J]. J. Mater. Eng. Perform., 2014, 23(12): 4251
doi: 10.1007/s11665-014-1181-7
13 Rees G I, Bhadeshia H K D H. Thermodynamics of acicular ferrite nucleation [J]. Mater. Sci. Technol., 1994, 10(5): 353
doi: 10.1179/mst.1994.10.5.353
14 Babu S S, Bhadeshia H K D H. Transition from bainite to acicular ferrite in reheated Fe-Cr-C weld deposits [J]. Mater. Sci. Technol., 1990, 6(10): 1005
doi: 10.1179/026708390790189605
15 Liu Z Q, Miyamoto G, Yang Z G, et al. Direct measurement of carbon enrichment during austenite to ferrite transformation in hypoeutectoid Fe-2Mn-C alloys [J]. Acta. Mater., 2013, 61(8): 3120
doi: 10.1016/j.actamat.2013.02.003
16 Zurob H S, Hutchinson C R, Bréchet Y, et al. Kinetic transitions during non-partitioned ferrite growth in Fe-C-X alloys [J]. Acta. Mater., 2009, 57(9): 2718
17 Zurob H S, Panahi D, Hutchinson C R, et al. Self-consistent model for planar ferrite growth in Fe-C-X alloys [J]. Metall. Mater. Trans. A., 2012, 44A(8) : 3456
18 Guo F, Wang P, Zheng C W, et al. Effect of rare-earth elements in solid solution on phase transformation in low-carbon steels [J]. Submitted Acta Metall. Sin., 2022
19 Lu W, Liu H, Xu Z Y, et al. Segregation of rare earth during isothermal transformation in low carbon steels [J]. Scripta Mater., 1993, 29(2): 273
doi: 10.1016/0956-716X(93)90321-I
20 Gao X Y, Ren H P, Li C L, et al. First-principles calculations of rare earth (Y, La and Ce) diffusivities in bcc Fe [J]. J. Alloys. Compd., 2016, 663: 316
doi: 10.1016/j.jallcom.2015.12.129
21 YAN H H, Hu Y, Zhao D W. The influence of rare earth elements on phase transformation in 25Mn steel during continuous heating [J]. Metall. Mater. Trans. A., 2018, 49A(11) : 5271
22 Agren J. A revised expression for the diffusivity of carbon in binary Fe-C austenite [J]. Scripta Mater., 1986, 20(11): 1507
23 Zener C. Theory of growth of spherical precipitates from solid solution [J]. J. Appl. Phys., 1949, 20(10): 950
doi: 10.1063/1.1698258
24 Torkamani H, Raygan S, Mateo C G, et al. The influence of La and Ce addition on inclusion modification in cast niobium micro-alloyed steels [J]. Metals, 2017, 7(9): 377
doi: 10.3390/met7090377
25 Chen L, Ma X C, Wang L M, et al. Effect of rare earth element yttrium addition on microstructures and properties of a 21Cr-11Ni austenitic heat-resistant stainless steel [J]. Mater. Des., 2011, 32(4): 2206
doi: 10.1016/j.matdes.2010.11.022
26 Zhou F, Cao Y X, Wan X L. In-situ observation of effect of La on grain refinement in simulated coarse-grain heat-affected zone of high strength low alloy steel [J]. Chin. J. Mater. Res., 2021, 35(3):2 31
26 周 峰, 曹羽鑫, 万响亮. 原位观察稀土镧对低合金高强度钢焊接热影响区晶粒细化的影响 [J]. 材料研究学报, 2021, 35(3):231
27 Fang K M, Ni R M. Research on determination of the rare-earth content in metal phases of steel [J]. Metall. Mater. Trans. A., 1986, 17(2): 315
28 Xu Z Y. Effects of rare earth element on isothermal and martensitic transformations in low carbon steels [J]. ISIJ Int., 1998, 38(11): 1153
doi: 10.2355/isijinternational.38.1153
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 杨栋天, 熊良银, 廖洪彬, 刘实. 基于热力学模拟计算的CLF-1钢改良设计[J]. 材料研究学报, 2023, 37(8): 590-602.
[12] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[13] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[14] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[15] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.