Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (6): 443-452    DOI: 10.11901/1005.3093.2022.403
  研究论文 本期目录 | 过刊浏览 |
CrTaTi难熔中熵合金的力学性能和抗氧化性能
史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋()
西南大学材料与能源学院 重庆 400715
Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi
SHI Chang, DU Yuhang, LAI Liming, XIAO Siming, GUO Ning, GUO Shengfeng()
School of Materials and Energy, Southwest University, Chongqing 400715, China
引用本文:

史畅, 杜宇航, 赖利民, 肖思明, 郭宁, 郭胜锋. CrTaTi难熔中熵合金的力学性能和抗氧化性能[J]. 材料研究学报, 2023, 37(6): 443-452.
Chang SHI, Yuhang DU, Liming LAI, Siming XIAO, Ning GUO, Shengfeng GUO. Mechanical Properties and Oxidation Resistance of a Refractory Medium-entropy Alloy CrTaTi[J]. Chinese Journal of Materials Research, 2023, 37(6): 443-452.

全文: PDF(14318 KB)   HTML
摘要: 

根据成分设计制备出等原子比CrTaTi难熔中熵合金,研究这种合金的室温力学性能和高温抗氧化行为。结果表明,这种合金的铸态由bcc基体相和少量的Cr2Ta Laves相组成,固溶强化和析出强化的协同作用使其具有良好的室温综合力学性能,压缩屈服强度和断裂应变分别为1500 MPa和22%。在600~1000℃的高温CrTaTi难熔中熵合金的短时抗氧化性能优异,其原因是在其表面生成了含TiO2和Cr2O3的复合氧化层,即使在1000℃氧化10 h其氧化增重也只有8.4 mg/cm2

关键词 金属材料难熔中熵合金微观结构室温力学性能高温抗氧化    
Abstract

A new refractory medium-entropy alloy of CrTaTi has been successfully developed through the reasonably composition design, and the room-temperature mechanical properties and high-temperature oxidation resistance of the alloy were systematically investigated in this paper. The results show that the as-cast alloy is composed of bcc phase matrix and a small amount of Cr2Ta Laves phase. The solid solution strengthening and precipitation strengthening make the alloy with good comprehensive mechanical properties at room-temperature. During the short-term oxidation test at medium- and high-temperatures a composite oxide scale containing TiO2 and Cr2O3 preferentially formed on the alloy surface, showing excellent oxidation resistance. The oxidation weight gain of CrTaTi alloy is only 8.4 mg/cm2 after oxidation in air at 1000℃ for 10 h.

Key wordsmetallic materials    refractory medium entropy alloy    microstructure    room-temperature mechanical properties    high-temperature oxidation resistance
收稿日期: 2022-07-20     
ZTFLH:  TB31  
基金资助:国家自然科学基金(52071276)
通讯作者: 郭胜锋,教授,sfguo@swu.edu.cn,研究方向为非晶合金、高熵合金以及生物可降解材料
Corresponding author: GUO Shengfeng, Tel: 13500330725, E-mail: sfguo@swu.edu.cn
作者简介: 史畅,女,1999年生,硕士生
图1  CrTaTi在不同温度下平衡相的计算摩尔分数和铸态CrTaTi难熔中熵合金的XRD谱
图2  铸态CrTaTi难熔中熵合金的SEM背散射图
AlloyRegionCrTaTi
CrTaTiDR29.642.428
ID40.122.637.3
表1  CrTaTi难熔中熵合金枝晶与枝晶间区域化学组成
图3  铸态CrTaTi难熔中熵合金的室温压缩工程应力应变曲线和典型铸态难熔多主元合金力学性能的统计图[7,23~33]
图4  在不同温度等温氧化不同时间后样品的形貌和等温氧化不同时间后样品的质量变化
Alloy compositionWeight gain /mg·cm-2Ref.Alloy compositionWeight gain /mg·cm-2Ref.
CrTaTi0.932This workAlNb1.5Ta0.5Ti1.5Zr0.510[37]
CrTaVW30[34]AlCrMoTiW3.8[38]
CrMo0.5NbTa0.5TiZr110[36]AlCr0.5Mo0.5NbTiZr21[39]
CrNbTiZr25[35]Al0.5Mo1.5NbTiZr20[39]
NbTiVZr100[35]AlCrNbTiZr39[39]
AlCrMoNbTi0.8[36]CrMoNbTaV13[40]
表2  一些典型难熔多主元合金在1000℃氧化3 h后的增重
AlloyΔSmixΔHmixδΩΔXVEC
CrTaTi9.13-5.86.723.856.805
表3  CrTaTi难熔中熵合金的混合熵(ΔSmix)、混合焓(ΔHmix)、原子尺寸差(δ)、参数Ω、价电子浓度(VEC)以及电负性差(ΔX)
AlloyCrTaTi
μ/GPa64.771.637.3
r/pm125143146
表4  Cr、Ta和Ti的剪切模量和原子半径[45]
图5  在1000℃氧化10 h后样品表面氧化物的XRD谱
图6  CrTaTi合金在1000℃等温氧化3 h和10 h后的截面SEM图像和EDS元素分布
图7  CrTaTi合金氧化5 min、10 min、30 min后的SEM图以及EDS元素的分布特征
图8  CrTaTi合金在1000℃氧化0、5、10和30 min后样品表面Cr2p精细谱分峰的拟合、Ti2p精细谱分峰拟合、Ta4f精细谱分峰拟合结果以及氧化不同时间后Cr、Ta和Ti三种元素的氧化物占比
OxideCr2O3TiO2(rutile)Ta2O5
ΔG/kJ·mol-1-538-713-598
表5  Cr、Ta和Ti的氧化物在1000℃的标准Gibbs自由能
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6(5): 299
doi: 10.1002/(ISSN)1527-2648
2 Cantor B, Chang I T H, Knight P, et al. Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, 375C: 213
3 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
4 Fu W J, Huang Y J, Sun J F, et al. Strengthening CrFeCoNi-Mn0.75Cu0.25 high entropy alloy via laser shock peening [J]. Int. J. Plast., 2022, 154: 103296
doi: 10.1016/j.ijplas.2022.103296
5 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345(6201): 1153
doi: 10.1126/science.1254581 pmid: 25190791
6 Senkov O N, Senkova S V, Dimiduk D M, et al. Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy [J]. J. Mater. Sci., 2012, 47: 6522
doi: 10.1007/s10853-012-6582-0
7 Senkov O N, Wilks G B, Scott J M, et al. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys [J]. Intermetallics, 2011, 19: 698
doi: 10.1016/j.intermet.2011.01.004
8 Guo Z M, Zhang A J, Han J S, et al. Microstructure, mechanical and tribological properties of CoCrFeNiMn high entropy alloy matrix composites with addition of Cr3C2 [J]. Tribol. Int., 2020, 151: 106436
doi: 10.1016/j.triboint.2020.106436
9 Kumar N A P K, Li C, Leonard K J, et al. Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation [J]. Acta Mater., 2016, 113: 230
doi: 10.1016/j.actamat.2016.05.007
10 Zhang W, Wang M, Wang L, et al. Interface stability, mechanical and corrosion properties of AlCrMoNbZr/(AlCrMoNbZr)N high-entropy alloy multilayer coatings under helium ion irradiation [J]. Appl. Surf. Sci., 2019, 485: 108
doi: 10.1016/j.apsusc.2019.04.192
11 Jayaraj J, Thinaharan C, Ningshen S, et al. Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium [J]. Intermetallics, 2017, 89: 123
doi: 10.1016/j.intermet.2017.06.002
12 Hua X J, Hu P, Xing H R, et al. Development and property tuning of refractory high-entropy alloys: a review [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1231
doi: 10.1007/s40195-022-01382-x
13 Lv Z P, Lei Z F, Huang H L, et al. Deformation behavior and toughening of high-entropy alloys [J]. Acta Metall. Sin., 2018, 54(11): 1553
doi: 10.11900/0412.1961.2018.00372
13 吕昭平, 雷智锋, 黄海龙 等. 高熵合金的变形行为及强韧化 [J]. 金属学报, 2018, 54(11): 1553
doi: 10.11900/0412.1961.2018.00372
14 Senkov O N, Wilks G B, Miracle D B, et al. Refractory high-entropy alloys [J]. Intermetallics, 2010, 18: 1758
doi: 10.1016/j.intermet.2010.05.014
15 Du Y H, Ding D Y, Guo N, et al. The progress of high-entropy alloys with the functional properties [J]. Mater. Rev., 2021, 35(17): 17051
15 杜宇航, 丁德渝, 郭 宁 等. 高熵合金功能特性研究进展 [J]. 材料导报, 2021, 35(17): 17051
16 Chang C H, Titus M S, Yeh J W. Oxidation behavior between 700 and 1300 C of refractory TiZrNbHfTa high-entropy alloys containing aluminum [J]. Adv. Eng. Mater., 2018, 20(6): 1700948
doi: 10.1002/adem.v20.6
17 Yan X H, Zhang Y. A body-centered cubic Zr50Ti35Nb15 medium-entropy alloy with unique properties [J]. Scripta Mater., 2020, 178: 329
doi: 10.1016/j.scriptamat.2019.11.059
18 Zhao Y L, Yang T, Tong Y, et al. Heterogeneous precipitation behavior and stacking-fault-mediated deformation in a CoCrNi-based medium-entropy alloy [J]. Acta Mater., 2017, 138: 72
doi: 10.1016/j.actamat.2017.07.029
19 Sohn S S, Kim D G, Jo Y H, et al. High-rate superplasticity in an equiatomic medium-entropy VCoNi alloy enabled through dynamic recrystallization of a duplex microstructure of ordered phases [J]. Acta Mater., 2020, 194: 106
doi: 10.1016/j.actamat.2020.03.048
20 Wang H, He Q F, Yang Y. High-entropy intermetallics: from alloy design to structural and functional properties [J]. Rare Met., 2022, 41: 1989
doi: 10.1007/s12598-021-01926-7
21 Lv Z P, Jiang S H, He J Y, et al. Second phase strengthening in advanced metal materials [J]. Acta Metall. Sin., 2016, 52(10): 1183
21 吕昭平, 蒋虽合, 何骏阳 等. 先进金属材料的第二相强化 [J]. 金属学报, 2016, 52(10): 1183
22 Gorr B, Schellert S, Müller F, et al. Current status of research on the oxidation behavior of refractory high entropy alloys [J]. Adv. Eng. Mater., 2021, 23(5): 2001047
doi: 10.1002/adem.v23.5
23 Wang S P, Xu J. (TiZrNbTa)-Mo high-entropy alloys: dependence of microstructure and mechanical properties on Mo concentration and modeling of solid solution strengthening [J]. Intermetallics, 2018, 95: 59
doi: 10.1016/j.intermet.2018.01.017
24 Wang W, Zhang Z T, Niu J Z, et al. Effect of Al addition on structural evolution and mechanical properties of the Al x HfNbTiZr high-entropy alloys [J]. Mater. Today Commun., 2018, 16: 242
25 Zhang J, Hu Y Y, Wei Q Q, et al. Microstructure and mechanical properties of RexNbMoTaW high-entropy alloys prepared by arc melting using metal powders [J]. J. Alloys Compd., 2020, 827: 154301
doi: 10.1016/j.jallcom.2020.154301
26 Yang X, Zhang Y, Liaw P K. Microstructure and compressive properties of NbTiVTaAlx high entropy alloys [J]. Proc. Eng., 2012, 36: 292
doi: 10.1016/j.proeng.2012.03.043
27 Qiao D X, Jiang H, Jiao W N, et al. A novel series of refractory high‑entropy alloys Ti2ZrHf0.5VNb x with high specific yield strength and good ductility [J]. Acta Metall. Sin. (Engl. Lett.), 2019, 32: 925
doi: 10.1007/s40195-019-00921-3
28 Tsakiropoulos P. Alloys for application at ultra-high temperatures: Nb-silicide in situ composites: challenges, breakthroughs and opportunities [J]. Prog. Mater. Sci., 2022, 123: 100714
doi: 10.1016/j.pmatsci.2020.100714
29 Yao H W, Qiao J W, Gao M C, et al. NbTaV-(Ti,W) refractory high-entropy alloys: experiments and modeling [J]. Mater. Sci. Eng., 2016, 674A: 203
30 Lee C, Song G, Gao M C, et al. Lattice distortion in a strong and ductile refractory high-entropy alloy [J]. Acta Mater., 2018, 160: 158
doi: 10.1016/j.actamat.2018.08.053
31 Feng R, Feng B J, Gao M C, et al. Superior high-temperature strength in a supersaturated refractory high-entropy alloy [J]. Adv. Mater., 2021, 33(48): 2102401
doi: 10.1002/adma.v33.48
32 Li Q Y, Zhang H, Li D C, et al. Comparative study of the microstructures and mechanical properties of laser metal deposited and vacuum arc melted refractory NbMoTa medium-entropy alloy [J]. Int. J. Refract. Met. Hard Met., 2020, 88: 105195
33 Wei Q Q, Shen Q, Zhang J, et al. Microstructure and mechanical property of a novel ReMoTaW high-entropy alloy with high density [J]. Int. J. Refract. Met. Hard Mater., 2018, 77: 8
doi: 10.1016/j.ijrmhm.2018.05.006
34 Waseem O A, Lee J, Lee H M, et al. The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials [J]. Mater. Chem. Phys., 2018, 210: 87
doi: 10.1016/j.matchemphys.2017.06.054
35 Butler T M, Chaput K J, Dietrich J R, et al. High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs) [J]. J. Alloys Compd., 2017, 729: 1004
doi: 10.1016/j.jallcom.2017.09.164
36 Gorr B, Mueller F, Christ H J, et al. High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb-20Mo-20Cr-20Ti-20Al with and without Si addition [J]. J. Alloys Compd., 2016, 688: 468
37 Butler T M, Chaput K J. Native oxidation resistance of Al20Nb30Ta10Ti30Zr10 refractory complex concentrated alloy (RCCA) [J]. J. Alloys Compd., 2019, 787: 606
doi: 10.1016/j.jallcom.2019.02.128
38 Gorr B, Azim M, Christ H J, et al. Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys [J]. J. Alloys Compd., 2015, 624: 270
doi: 10.1016/j.jallcom.2014.11.012
39 Waseem O A, Auyeskhan U, Lee H M, et al. A combinatorial approach for the synthesis and analysis of Al x Cr y Mo z NbTiZr high-entropy alloys: oxidation behavior [J]. J. Mater. Res., 2018, 33(19): 3226
doi: 10.1557/jmr.2018.241
40 Xiao Y F, Kuang W H, Xu Y F, et al. Microstructure and oxidation behavior of the CrMoNbTaV high-entropy alloy [J]. J. Mater. Res., 2019, 34: 301
doi: 10.1557/jmr.2018.340
41 Zhang Y, Zhou Y J, Lin J P, et al. Solid-solution phase formation rules for multi-component alloys [J]. Adv. Eng. Mater., 2008, 10(6): 534
doi: 10.1002/(ISSN)1527-2648
42 Yang X, Zhang Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys [J]. Mater. Chem. Phys., 2012, 132: 233
doi: 10.1016/j.matchemphys.2011.11.021
43 Guo S, Ng C, Lu J, et al. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys [J]. J. Appl. Phys., 2011, 109(10): 103505
doi: 10.1063/1.3587228
44 Toda-Caraballo I, Rivera-Díaz-del-Castillo P E J. Modelling solid solution hardening in high entropy alloys [J]. Acta Mater., 2015, 85: 14
doi: 10.1016/j.actamat.2014.11.014
45 Warlimont H, Martienssen W. Springer Handbook of Materials Data [M]. 2nd ed. Cham: Springer, 2018
46 Von Nembach E. Particle Strengthening of Metals and Alloys [M]. New York: John Wiley & Sons, 1997
47 Raman L, Anupam A, Karthick G, et al. Strengthening mechanisms in CrMoNbTiW refractory high entropy alloy [J]. Mater. Sci. Eng., 2021, 819A: 141503
48 Georg F M. Thermodynamik Für Werkstoffwissenschaftler [M]. Weinheim: Leipzig, 2009
49 Müller F, Gorr B, Christ H J, et al. On the oxidation mechanism of refractory high entropy alloys [J]. Corros. Sci., 2019, 159: 108161
doi: 10.1016/j.corsci.2019.108161
50 Ren W L, Ouyang F F, Ding B, et al. The influence of CrTaO4 layer on the oxidation behavior of a directionally-solidified nickel-based superalloy at 850~900℃ [J]. J. Alloys Compd., 2017, 724: 565
doi: 10.1016/j.jallcom.2017.07.066
51 Lo K C, Chang Y J, Murakami H, et al. An oxidation resistant refractory high entropy alloy protected by CrTaO4-based oxide [J]. Sci. Rep., 2019, 9: 7266
doi: 10.1038/s41598-019-43819-x
52 Gorr B, Müller F, Schellert S, et al. A new strategy to intrinsically protect refractory metal based alloys at ultra high temperatures [J]. Corros. Sci., 2020, 166: 108475
doi: 10.1016/j.corsci.2020.108475
53 Huang D, Lu J S, Zhuang Y X, et al. The role of Nb on the high temperature oxidation behavior of CoCrFeMnNb x Ni high-entropy alloys [J]. Corros. Sci., 2019, 158: 108088
doi: 10.1016/j.corsci.2019.07.012
54 Xu L J, Zong L, Luo C Y, et al. Toughening pathways and regulatory mechanisms of refractory high-entropy alloys [J]. Acta Metall. Sin., 2022, 58(3): 257
doi: 10.11900/0412.1961.2021.00286
54 徐流杰, 宗 乐, 罗春阳 等. 难熔高熵合金的强韧化途径与调控机理 [J]. 金属学报, 2022, 58(3): 257
doi: 10.11900/0412.1961.2021.00286
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.