Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (6): 408-416    DOI: 10.11901/1005.3093.2021.697
  研究论文 本期目录 | 过刊浏览 |
稀土改性GCr15钢与保持架材料间的滑动摩擦磨损
李林龙1, 杨丽琪2, 薛伟海2(), 高禩洋2, 王旭1, 段德莉2, 李曙2
1.辽宁石油化工大学机械工程学院 抚顺 113005
2.中国科学院金属研究所 辽宁省航发材料摩擦学重点实验室 沈阳 110016
Sliding Friction and Wear between Rare Earth Modified GCR15 Steel against Cage Materials
LI Linlong1, YANG Liqi2, XUE Weihai2(), GAO Siyang2, WANG Xu1, DUAN Deli2, LI Shu2
1.School of Mechanical Engineering, Liaoning Petrochemical University, Fushun 113005, China
2.Institute of Metal Research, Chinese Academy of Sciences, Liaoning Key Laboratory of Aero-engine Materials Tribology, Shenyang 110016, China
引用本文:

李林龙, 杨丽琪, 薛伟海, 高禩洋, 王旭, 段德莉, 李曙. 稀土改性GCr15钢与保持架材料间的滑动摩擦磨损[J]. 材料研究学报, 2023, 37(6): 408-416.
Linlong LI, Liqi YANG, Weihai XUE, Siyang GAO, Xu WANG, Deli DUAN, Shu LI. Sliding Friction and Wear between Rare Earth Modified GCR15 Steel against Cage Materials[J]. Chinese Journal of Materials Research, 2023, 37(6): 408-416.

全文: PDF(14776 KB)   HTML
摘要: 

进行环/块实验,研究了在脂润滑条件下稀土改性的GCr15轴承钢与胶木保持架材料间的滑动摩擦学行为,并与普通GCr15轴承钢进行了对比。结果表明:虽然稀土GCr15钢与胶木材料间的摩擦系数较大,但是其磨损体积却比普通GCr15钢的小。两种轴承钢材料的去除都以磨粒磨损为主,且随着转速的提高磨损体积减小。稀土GCr15钢的磨痕表面只出现犁沟,而普通GCr15钢除了出现磨粒磨损中塑性去除的犁沟,剥落也比较多。从碳化物、非金属夹杂物和残余奥氏体等方面,研究了GCr15钢经稀土改性后的组织改善对其使役行为的影响。结果表明,虽然稀土改性在一定程度上降低了轴承钢的硬度,但却有效地抑制了GCr15轴承钢在服役中出现的磨粒磨损中的断裂去除机制——材料剥落,从而提高了其在滑动摩擦条件下的耐磨损性能。

关键词 金属材料稀土改性GCr15钢滑动摩擦磨损机制    
Abstract

The sliding tribological behavior of rare earth-modified GCr15 bearing steel against bakelite cage material was investigated via ring/block tester under grease lubrication conditions, in comparison with the ordinary GCr15 bearing steel. The results show that although the measured friction coefficient between rare earth GCr15 steel and bakelite material is larger, its wear volume is smaller than the ordinary GCr15 steel; both bearing steels have experienced material removal mainly caused by abrasive wear, and their wear volume tends to decrease with the increasing rotation speed; only furrows can be seen on the surface of the wear scar of rare earth GCr15 steel, while the ordinary GCr15 steel has more flaking in addition to the furrows that are removed during abrasive wear. The influence of the rare earth induced microstructural improvement of the GCr15 steel on its service behavior is discussed in terms of carbides, non-metallic inclusions and retained austenite. It follows that although rare earth modification reduces the hardness of bearing steel to a certain extent, but it can effectively suppress the fracture removal mechanism in abrasive wear, that GCr15 bearing steel inevitably appears during service, i.e., material spalling, thereby its wear resistance under sliding friction conditions is improved.

Key wordsmetallic materials    rare earth modification    GCr15 steel    sliding friction    frictional wear
收稿日期: 2021-12-21     
ZTFLH:  TG142.1+3  
基金资助:中国科学院战略性先导科技专项(XDC04040401)
通讯作者: 薛伟海,副研究员,whxue@imr.ac.cn,研究方向为材料摩擦磨损
Corresponding author: XUE Weihai, Tel: 15902407570, E-mail: whxue@imr.ac.cn
作者简介: 李林龙,男,1993年生,硕士生
图1  试验原理示意图
CSiMnCrSAlPTiT[O]RE
Rare earth GCr150.970.250.361.510.0030.0190.0120.00124.7×10-60.0065
Ordinary GCr150.970.240.371.500.0030.0180.0120.00125.5×10-6-
表1  稀土/普通GCr15钢的化学成分
图2  摩擦磨损实验用样品的形状和尺寸
1234Average
Rare earth GCr1560.660.660.960.360.6
Ordinary GCr1563.163.863.063.863.4
表2  稀土/普通GCr15钢的宏观洛氏硬度
图3  块状试样的扫描电镜照片
图4  在不同转速下不同材料配副的摩擦系数曲线
图5  稀土/普通GCr15钢块试样的磨损体积
图6  不同转速实验后不同块状试样的磨痕形貌
图7  普通GCr15钢磨痕剥落部位的表面和截面的照片
ElementSurfaceSection
C47.9246.51
O7.5316.94
Si-0.27
Cr2.161.41
Fe42.3934.87
表3  剥落坑处的能谱分析
图8  块状试样中碳化物尺寸的分布
图9  普通GCr15轴承钢剥落坑的照片
CompositionMgOAl2O3SiO2CaOMnOCaSMnSTiNRESREO
Rare earth GCr150.656.980.000.000.200.060.98-87.633.50
Ordinary GCr156.1128.830.040.034.410.9951.737.86--
表4  稀土/普通GCr15轴承钢夹杂物的含量
图10  稀土/普通GCr15轴承钢中夹杂物的形貌
图11  稀土/普通GCr15轴承钢中非金属夹杂物尺寸的分布
图12  稀土/普通GCr15轴承钢基体和磨痕的XRD谱
1 Li D H, Li Z M, Xiao M G, et al. Effect of deep cryogenic treatment on mechanical property and microstructure of a low carbon high alloy martensitic bearing steel during tempering [J]. Chinese Journal of Materials Research, 2019, 33(8): 11
1 李东辉, 李志敏, 肖茂果 等. 深冷处理对低碳高合金马氏体轴承钢力学性能及组织的影响 [J]. 材料研究学报, 2019, 33(8): 11
2 Li Z K, Lei J Z, Xu H F, et al. Current status and development trend of bearing steel in China and abroad [J]. Journal of Iron and Steel Research, 2016. 28(03): p.1
3 Wu D, Zhang X C, Li Y F, et al. Characterization of machined surface quality and near-surface microstructure of a high speed thrust angular contact ball bearing [J]. Journal of Materials Science & Technology, 2021, 86: 219
4 Yu F, Chen X P, Xu H F, et al. Metallurgical quality and fatigue performance of rolling bearing steel and development direction of high-end bearing steel [J]. Metallurgica Sinica, 2020, 56(04): 513
4 俞 峰, 陈兴品, 徐海峰 等. 滚动轴承钢冶金质量与疲劳性能现状及高端轴承钢发展方向 [J]. 金属学报, 2020, 56(04): 513
5 Xi S, Cao H, Chen X, Dynamic modeling of machine tool spindle bearing system and model based diagnosis of bearing fault caused by collision [J]. Procedia CIRP, 2018, 77: 614
doi: 10.1016/j.procir.2018.08.197
6 He T T, Shao R N, Liu J, et al. Sliding friction and wear properties of GCr15 steelunder different loads [J]. Journal of Materials heat Treatment, 2020, 41(7): 105
6 贺甜甜, 邵若男, 刘 建 等. 不同载荷下GCr15 钢的滑动摩擦磨损性能 [J]. 材料热处理学报, 2020, 41(7): 105
doi: 10.13289/j.issn.1009-6264.2019-0553
7 Su B, Zhang S. Friction and wear behaviors of GCr15 steel under dry friction and grease lubrication [A]. Asia-Pacific Materials Science and Information Technology Conference [C]. Shanghai, 2014
8 Wang Z N, Cui H Z, Zhang G S.et al. Microstructure and room-temperature dry sliding wear behavior of GCr15 steel treated by surface induction hardening [J]. Journal of Materials heat Treatment, 2015, 36(11): 180
8 王泽宁, 崔洪芝, 张国松 等. GCr15 钢表面感应淬火微观组织及室温干滑动磨损行为 [J]. 材料热处理学报, 2015. 36(11): 180
9 Zhang Y F, Zhou S H, Zhang G, et al. The friction and wear behaviors of polyimide bearing retainer under point-contact condition [J]. Industrial Lubrication and Tribology, 2020, 72(7): 931
doi: 10.1108/ILT-01-2020-0017
10 Xu Y. Development of impact sliding wear testing machine and performance test of PTFE matrix composites [D]. Harbin: Harbin Institute of Technology, 2013
10 徐 扬. 冲击滑动磨损试验机的研制及PTFE基复合材料性能测试 [D]. 哈尔滨: 哈尔滨工业大学, 2013
11 Wei W, Li H, Guo X D. The Application of rare earth in the production of bearing steel [J]. Chinese Rare Earths, 2020, 41(3): 139
12 Chang L Z, Gao G, Zheng F Z et al. Effect of rare earth and magnesium complex treatment on inclusions in GCr15 bearing steel [J]. Chinese Journal of Engineering, 2019, 41(6): 763
13 Qiu M, Li Y C, Chen L, et al. Effects of rare earth treatment on tribological properties of self-lubricating spherical plain bearings [J]. Wear, 2013, 305(1-2): 274
doi: 10.1016/j.wear.2012.12.021
14 Yang C Y, Luan Y K, Li D Z, et al. Very high cycle fatigue behavior of bearing steel with rare earth addition [J]. International Journal of Fatigue, 2020. 131: 105263.1
15 Xu C C, Zhang L S. Effect of rare earth elements on the performance of bearing steel [J]. Acta Metall Sin. 1984, (4): 303
15 许传才, 张隆水. 稀土改善轴承钢性能的试验 [J]. 金属学报, 1984, (4): 303
16 Yang C Y, Luan Y K, Li D Z, et al. Effects of rare earth elements on inclusions and impact toughness of high-carbon chromium bearing steel [J]. Journalof Materials Heat Treatment, 2019, 35(7): 1298
17 Gui W M, Liu Y, Zhang X T, et al. Effect of rare earth addition on microstructure, mechanical property and nitriding performance of a medium carbon steel [J]. Chinese Journal of Materials Research, 2021, 35(1): 9
17 桂伟民, 刘 义, 张晓田 等. 稀土元素对中碳钢组织,力学性能和渗氮的影响 [J]. 材料研究学报, 2021, 35(1): 9
18 Cao Y J. Study on residual stress and friction wear properties of Ball Screw surface during induction hardening [D]. Qingdao: Shandong University of Science and Technology, 2018
18 曹勇军. 滚珠丝杠表面感应淬火残余应力及摩擦磨损性能研究 [D]. 青岛: 山东科技大学, 2018
19 Wang Z S, Xie W, Peng Z, et al. Environment-induced brittle wear mechanism of K417G alloy [J]. Journal of Materials Research, 2021, 35(07): 501
19 王振生, 谢 威, 彭 真 等. K417G合金的环境致脆磨损机理 [J]. 材料研究学报, 2021, 35(07): 501
20 Sun F L, Geng K, Yu F, et al. Relationship of inclusions and rolling contact fatigue life for ultra-clean bearing steel [J]. Acta Metall Sin. 2020, 56(05): 693
20 孙飞龙, 耿 克, 俞 峰 等. 超洁净轴承钢中夹杂物与滚动接触疲劳寿命的关系 [J]. 金属学报, 2020, 56(05): 693
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.