Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (6): 401-407    DOI: 10.11901/1005.3093.2022.337
  研究论文 本期目录 | 过刊浏览 |
基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能
张藤心1,2, 王函1(), 郝亚斌1,2, 张建岗1,2, 孙新阳1,2, 曾尤1,2()
1.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
2.中国科学技术大学材料科学与工程学院 沈阳 110016
Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds
ZHANG Tengxin1,2, WANG Han1(), HAO Yabin1,2, ZHANG Jiangang1,2, SUN Xinyang1,2, ZENG You1,2()
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
Tengxin ZHANG, Han WANG, Yabin HAO, Jiangang ZHANG, Xinyang SUN, You ZENG. Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. Chinese Journal of Materials Research, 2023, 37(6): 401-407.

全文: PDF(2927 KB)   HTML
摘要: 

提出在石墨烯/聚合物复合材料内构筑界面氢键结构,利用氢键的动态可逆性和断裂/再生过程中的能量耗散可显著提高复合材料的阻尼性能。对石墨烯和聚(苯乙烯-乙烯-丁二烯-苯乙烯)(SEBS)进行接枝改性,引入氢键单元从而在石墨烯/SEBS复合材料的界面构筑了多重氢键结构。研究了这种复合材料的循环拉伸以及动态力学性能。结果表明,这种复合材料的弹性模量、滞后损耗、阻尼因子比SEBS分别提高165%、237%和42%。强度和阻尼性能的显著提高,主要归因于复合材料组元间界面氢键的相互作用、高效应力传递、以及氢键可逆断裂/再生过程中显著的能量耗散。

关键词 复合材料阻尼性能界面氢键石墨烯力学强度    
Abstract

Developing advanced composites with high strength and high vibration damping is extremely important for ensuring high safety and reliability of composites in high-frequency-vibration circumstances. In this paper, we proposed a novel strategy to remarkably enhance the damping property of composites by introducing reversible hydrogen bonds at the interfaces of graphene/polymer composites. Graphene and poly(styrene-ethylene-butadiene-styrene) (SEBS) were chemically modified to graft hydrogen bonding moiety, consequently forming multiple hydrogen-bonding networks at interfaces of graphene/SEBS composites. The cyclic tensile behavior and dynamic mechanical properties of the composites were investigated in detail. The results showed that the mechanical and damping properties of graphene/SEBS composites were greatly improved by introducing graphene and interfacial hydrogen-bonding structures. The elastic modulus, hysteresis loss, and damping ratio of the graphene/SEBS composites were increased by 165%, 237% and 42% in comparison with that of SEBS. Such remarkable enhancement in both mechanical and damping properties is mainly attributed to the interfacial hydrogen bonds between components, high-efficiency stress-transferring, and significant energy dissipation resulted from reversible breaking/formation of hydrogen bonds during cyclic deformation.

Key wordscomposites    damping properties    interfacial hydrogen bonds    graphene    mechanical strength
收稿日期: 2022-06-20     
ZTFLH:  TB332  
基金资助:国家自然科学基金(52130209);国家自然科学基金(51802317);辽宁省自然科学基金(2019JH3/30100008);纳米功能复合材料山西省重点实验室开放基金(NFCM202102);中国科学院金属所所创基金(2022-PY07);沈阳材料科学国家研究中心项目(2021-FP31)
通讯作者: 曾尤,研究员,yzeng@imr.ac.cn,研究方向为纳米炭复合材料;
王函,副研究员,hanwang@imr.ac.cn,研究方向为纳米炭复合材料
Corresponding author: ZENG You, Tel:(024)83978090, E-mail: yzeng@imr.ac.cn;
WANG Han, Tel:(024)83978090, E-mail: hanwang@imr.ac.cn
作者简介: 张藤心,女,1995年生,博士生
图1  石墨烯/SEBS复合材料的界面氢键结构示意图
图2  GO、m-Gr、SEBS、m-SEBS和石墨烯/SEBS复合材料的红外光谱和变温原位红外光谱
图3  石墨烯/SEBS复合材料的循环拉伸特性
图4  石墨烯/SEBS复合材料的储能模量、损耗模量、损耗因子以及石墨烯含量不同的成立的储能模量与损耗因子
1 Zhou X Q, Yu D Y, Shao X Y, et al. Research and applications of viscoelastic vibration damping materials: A review [J]. Compos. Struct., 2016, 136: 460
doi: 10.1016/j.compstruct.2015.10.014
2 Zeng Y, Ci L J, Carey B J, et al. Design and reinforcement: vertically aligned carbon nanotube-based sandwich composites [J]. ACS Nano, 2010, 4(11): 6798
doi: 10.1021/nn101650p pmid: 20958076
3 Wang H, Ma C Q, Zhang W M, et al. Improved damping and high strength of graphene-coated nickel hybrid foams [J]. ACS Appl. Mater. Inter., 2019, 11(45): 42690
doi: 10.1021/acsami.9b10382
4 Zhao J N, Wang F L, Zhang X, et al. Vibration damping of carbon nanotube assembly materials [J]. Adv. Eng. Mater., 2018, 20(3): 1700647
doi: 10.1002/adem.v20.3
5 Meaud J, Sain T, Yeom B, et al. Simultaneously high stiffness and damping in nanoengineered microtruss composites [J]. ACS Nano, 2014, 8(4): 3468
doi: 10.1021/nn500284m pmid: 24620996
6 Zhang F Q, Wang W, Sun G, et al. Preparation of Y2O3 hollow spheres and low frequency damping poperties of rubber composite reinforced with Y2O3 hollow spheres [J]. Chin. J. Mater. Res., 2015, 29(7): 505
6 张富青, 王 维, 孙 刚 等. 氧化钇空心微球的制备及其复合橡胶的低频阻尼性能 [J]. 材料研究学报, 2015, 29(7): 505
7 Papageorgiou D G, Kinloch I A, Young R J. Mechanical properties of graphene and graphene-based nanocomposites [J]. Prog. Mater. Sci., 2017, 90: 75
doi: 10.1016/j.pmatsci.2017.07.004
8 Zeng Y, Wang H. Viscoelastic damping of nanocarbon/epoxy composites [J]. Chinese Sci. Bull., 2014, 59(33): 3232
9 Gardea F, Glaz B, Riddick J, et al. Energy dissipation due to interfacial slip in nanocomposites reinforced with aligned carbon nanotubes [J]. ACS Appl. Mater. Inter., 2015, 7(18): 9725
doi: 10.1021/acsami.5b01459
10 Liu A L, Wang K W, Bakis C E. Effect of functionalization of single-wall carbon nanotubes (SWNTs) on the damping characteristics of SWNT-based epoxy composites via multiscale analysis [J]. Compos. Part A-Appl. S., 2011, 42(11): 1748
doi: 10.1016/j.compositesa.2011.07.030
11 Pokharel P, Pant B, Pokhrel K, et al. Effects of functional groups on the graphene sheet for improving the thermomechanical properties of polyurethane nanocomposites [J]. Compos. Part B-Eng., 2015, 78: 192
doi: 10.1016/j.compositesb.2015.03.089
12 Lu W J, Qin F X, Wang Y F, et al. Engineering graphene wrinkles for large enhancement of interlaminar friction enabled damping capability [J]. ACS Appl. Mater. Inter., 2019, 11(33): 30278
doi: 10.1021/acsami.9b09393
13 Li C J, Wang Y J, Yuan Z, et al. Construction of sacrificial bonds and hybrid networks in EPDM rubber towards mechanical performance enhancement [J]. Appl. Surf. Sci., 2019, 484: 616
doi: 10.1016/j.apsusc.2019.04.064
14 Gasperini A, Wang G J N, Molina-Lopez F, et al. Characterization of hydrogen bonding formation and breaking in semiconducting polymers under mechanical strain [J]. Macromolecules, 2019, 52(6): 2476
doi: 10.1021/acs.macromol.9b00145
15 Campanella A, Dohler D, Binder W H. Self-healing in supramolecular polymers [J]. Macromol. Rapid Comm., 2018, 39(17): 1700739
doi: 10.1002/marc.201700739
16 Shao C Y, Chang H L, Wang M, et al. High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds [J]. ACS Appl. Mater. Inter., 2017, 9(34): 28305
doi: 10.1021/acsami.7b09614
17 Lee D W, Hong T K, Kang D, et al. Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides [J]. J. Mater. Chem., 2011, 21(10): 3438
doi: 10.1039/C0JM02270E
18 Che J F, Shen L Y, Xiao Y H. A new approach to fabricate graphene nanosheets in organic medium: combination of reduction and dispersion [J]. J. Mater. Chem., 2010, 20(9): 1722
doi: 10.1039/b922667b
19 Zhang J L, Yang H J, Shen G X, et al. Reduction of graphene oxide via L-ascorbic acid [J]. Chem. Commun., 2010, 46(7): 1112
doi: 10.1039/B917705A
20 Park H S, Hong C K. Anion exchange membrane based on sulfonated poly (styrene-ethylene-butylene-styrene) copolymers [J]. Polymers-Basel, 2021, 13(10): 1669
21 Liu J, Wang S, Tang Z H, et al. Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis-1,4-polyisoprene toward a high-performance elastomer [J]. Macromolecules, 2016, 49(22): 8593
doi: 10.1021/acs.macromol.6b01576
22 Wang J F, Jin X X, Zhang X M, et al. Effect of tunable styrene content on achieving high-performance poly(styrene-b-ethylene-ran-butylene-b-styrene)/graphene oxide nanocomposites [J]. Compos. Sci. Technol., 2018, 164: 229
doi: 10.1016/j.compscitech.2018.05.041
23 Clark D C, Baker W E, Whitney R A. Peroxide-initiated comonomer grafting of styrene and maleic anhydride onto polyethylene: Effect of polyethylene microstructure [J]. J. Appl. Polym. Sci., 2001, 79(1): 96
doi: 10.1002/(ISSN)1097-4628
24 Chino K, Ashiura M. Themoreversible cross-linking rubber using supramolecular hydrogen-bonding networks [J]. Macromolecules, 2001, 34(26): 9201
doi: 10.1021/ma011253v
25 Zhan Y Q, Yang X L, Guo H, et al. Cross-linkable nitrile functionalized graphene oxide/poly(arylene ether nitrile) nanocomposite films with high mechanical strength and thermal stability [J]. J. Mater. Chem., 2012, 22(12): 5602
doi: 10.1039/c2jm15780b
26 Tetsuka H, Asahi R, Nagoya A, et al. Optically tunable amino-functionalized graphene quantum dots [J]. Adv. Mater., 2012, 24(39): 5333
doi: 10.1002/adma.201201930
27 Mei J, Liu W F, Huang J H, et al. Lignin-reinforced ethylene-propylene-diene copolymer elastomer via hydrogen bonding interactions [J]. Macromol. Mater. Eng., 2019, 304(4): 1800689
doi: 10.1002/mame.v304.4
28 Zeng S J, Ye L, Yan S J, et al. Amphibious hybrid nanostructured proton exchange membranes [J]. J. Membrane Sci., 2011, 367(1-2): 78
doi: 10.1016/j.memsci.2010.10.041
29 Zhan Y Q, Yang X L, Guo H, et al. Cross-linkable nitrile functionalized graphene oxide/poly(arylene ether nitrile) nanocomposite films with high mechanical strength and thermal stability [J]. J. Mater. Chem., 2012, 22(12): 5602
doi: 10.1039/c2jm15780b
30 Kim N H, Kuila T, Lee J H. Simultaneous reduction, functionalization and stitching of graphene oxide with ethylenediamine for composites application [J]. J. Mater. Chem. A, 2013, 1(4): 1349
doi: 10.1039/C2TA00853J
31 Xu K M, Zhang F S, Zhang X L, et al. Molecular insights into hydrogen bonds in polyurethane/hindered phenol hybrids: evolution and relationship with damping properties [J]. J. Mater. Chem. A, 2014, 2(22): 8545
doi: 10.1039/C4TA00476K
32 Wang W Y, Liu Y M, Jin X, et al. Effect of polypyrrole modified carbon fiber on interfacial property of composite PPy-carbon fiber/epoxy [J]. Chin. J. Mater. Res, 2017, 32(3): 209
32 王闻宇, 刘亚敏, 金 欣 等. 聚吡咯修饰碳纤维/环氧树脂复合材料的界面剪切强度 [J]. 材料研究学报, 2018, 32(3): 209
doi: 10.11901/1005.3093.2017.422
33 Li C J, Yuan Z, Ye L. Fcile construction of enhanced multiple interfacial interactions in EPDM/zinc dimethacrylate (ZDMA) rubber composites: highly reinforcing effect and improvement mechanism of sealing resilience [J]. Compos. Part A-Appl. S., 2019, 126: 105580
doi: 10.1016/j.compositesa.2019.105580
[1] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[2] 刘瑞峰, 仙运昌, 赵瑞, 周印梅, 王文先. 钛合金/不锈钢复合板的放电等离子烧结技术制备及其性能[J]. 材料研究学报, 2023, 37(8): 581-589.
[3] 季雨辰, 刘树和, 张天宇, 查成. MXene在锂硫电池中应用的研究进展[J]. 材料研究学报, 2023, 37(7): 481-494.
[4] 王伟, 解泽磊, 屈怡珅, 常文娟, 彭怡晴, 金杰, 王快社. Graphene/SiO2 纳米复合材料作为水基润滑添加剂的摩擦学性能[J]. 材料研究学报, 2023, 37(7): 543-553.
[5] 邵萌萌, 陈招科, 熊翔, 曾毅, 王铎, 王徐辉. C/C-ZrC-SiC复合材料的Si2+ 离子辐照行为[J]. 材料研究学报, 2023, 37(6): 472-480.
[6] 张锦中, 刘晓云, 杨健茂, 周剑锋, 查刘生. 温度响应性双面纳米纤维的制备和性能[J]. 材料研究学报, 2023, 37(4): 248-256.
[7] 王刚, 杜雷雷, 缪自强, 钱凯成, 杜向博文, 邓泽婷, 李仁宏. 聚多巴胺改性碳纤维增强尼龙6复合材料的界面性能[J]. 材料研究学报, 2023, 37(3): 203-210.
[8] 林师峰, 徐东安, 庄艳歆, 张海峰, 朱正旺. TiZr基非晶/TC21双层复合材料的制备和力学性能[J]. 材料研究学报, 2023, 37(3): 193-202.
[9] 苗琪, 左孝青, 周芸, 王应武, 郭路, 王坦, 黄蓓. 304不锈钢纤维/ZL104铝合金复合泡沫的孔结构、力学、吸声性能及其机理[J]. 材料研究学报, 2023, 37(3): 175-183.
[10] 张开银, 王秋玲, 向军. FeCo/SnO2 复合纳米纤维的制备及其吸波性能[J]. 材料研究学报, 2023, 37(2): 102-110.
[11] 周聪, 昝宇宁, 王东, 王全兆, 肖伯律, 马宗义. (Al11La3+Al2O3)/Al复合材料的高温性能及其强化机制[J]. 材料研究学报, 2023, 37(2): 81-88.
[12] 罗昱, 陈秋云, 薛丽红, 张五星, 严有为. 钠离子电池双层碳包覆Na3V2(PO4)3 正极材料的超声辅助溶液燃烧合成及其电化学性能[J]. 材料研究学报, 2023, 37(2): 129-135.
[13] 刘志华, 岳远超, 丘一帆, 卜湘, 阳涛. g-C3N4/Ag/BiOBr复合材料的制备及其光催化还原硝酸盐氮[J]. 材料研究学报, 2023, 37(10): 781-790.
[14] 谢东航, 潘冉, 朱士泽, 王东, 刘振宇, 昝宇宁, 肖伯律, 马宗义. 增强颗粒尺寸对B4C/Al-Zn-Mg-Cu复合材料微观组织及力学性能的影响[J]. 材料研究学报, 2023, 37(10): 731-738.
[15] 王春锦, 陈文革, 亢宁宁, 杨涛. 石墨烯调控3D打印功能钛的组织和性能[J]. 材料研究学报, 2023, 37(10): 791-800.