|
|
基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能 |
张藤心1,2, 王函1( ), 郝亚斌1,2, 张建岗1,2, 孙新阳1,2, 曾尤1,2( ) |
1.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016 2.中国科学技术大学材料科学与工程学院 沈阳 110016 |
|
Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds |
ZHANG Tengxin1,2, WANG Han1( ), HAO Yabin1,2, ZHANG Jiangang1,2, SUN Xinyang1,2, ZENG You1,2( ) |
1.Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2.School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China |
引用本文:
张藤心, 王函, 郝亚斌, 张建岗, 孙新阳, 曾尤. 基于界面氢键结构的石墨烯/聚合物复合材料的阻尼性能[J]. 材料研究学报, 2023, 37(6): 401-407.
Tengxin ZHANG,
Han WANG,
Yabin HAO,
Jiangang ZHANG,
Xinyang SUN,
You ZENG.
Damping Enhancement of Graphene/Polymer Composites Based on Interfacial Interactions of Hydrogen Bonds[J]. Chinese Journal of Materials Research, 2023, 37(6): 401-407.
1 |
Zhou X Q, Yu D Y, Shao X Y, et al. Research and applications of viscoelastic vibration damping materials: A review [J]. Compos. Struct., 2016, 136: 460
doi: 10.1016/j.compstruct.2015.10.014
|
2 |
Zeng Y, Ci L J, Carey B J, et al. Design and reinforcement: vertically aligned carbon nanotube-based sandwich composites [J]. ACS Nano, 2010, 4(11): 6798
doi: 10.1021/nn101650p
pmid: 20958076
|
3 |
Wang H, Ma C Q, Zhang W M, et al. Improved damping and high strength of graphene-coated nickel hybrid foams [J]. ACS Appl. Mater. Inter., 2019, 11(45): 42690
doi: 10.1021/acsami.9b10382
|
4 |
Zhao J N, Wang F L, Zhang X, et al. Vibration damping of carbon nanotube assembly materials [J]. Adv. Eng. Mater., 2018, 20(3): 1700647
doi: 10.1002/adem.v20.3
|
5 |
Meaud J, Sain T, Yeom B, et al. Simultaneously high stiffness and damping in nanoengineered microtruss composites [J]. ACS Nano, 2014, 8(4): 3468
doi: 10.1021/nn500284m
pmid: 24620996
|
6 |
Zhang F Q, Wang W, Sun G, et al. Preparation of Y2O3 hollow spheres and low frequency damping poperties of rubber composite reinforced with Y2O3 hollow spheres [J]. Chin. J. Mater. Res., 2015, 29(7): 505
|
6 |
张富青, 王 维, 孙 刚 等. 氧化钇空心微球的制备及其复合橡胶的低频阻尼性能 [J]. 材料研究学报, 2015, 29(7): 505
|
7 |
Papageorgiou D G, Kinloch I A, Young R J. Mechanical properties of graphene and graphene-based nanocomposites [J]. Prog. Mater. Sci., 2017, 90: 75
doi: 10.1016/j.pmatsci.2017.07.004
|
8 |
Zeng Y, Wang H. Viscoelastic damping of nanocarbon/epoxy composites [J]. Chinese Sci. Bull., 2014, 59(33): 3232
|
9 |
Gardea F, Glaz B, Riddick J, et al. Energy dissipation due to interfacial slip in nanocomposites reinforced with aligned carbon nanotubes [J]. ACS Appl. Mater. Inter., 2015, 7(18): 9725
doi: 10.1021/acsami.5b01459
|
10 |
Liu A L, Wang K W, Bakis C E. Effect of functionalization of single-wall carbon nanotubes (SWNTs) on the damping characteristics of SWNT-based epoxy composites via multiscale analysis [J]. Compos. Part A-Appl. S., 2011, 42(11): 1748
doi: 10.1016/j.compositesa.2011.07.030
|
11 |
Pokharel P, Pant B, Pokhrel K, et al. Effects of functional groups on the graphene sheet for improving the thermomechanical properties of polyurethane nanocomposites [J]. Compos. Part B-Eng., 2015, 78: 192
doi: 10.1016/j.compositesb.2015.03.089
|
12 |
Lu W J, Qin F X, Wang Y F, et al. Engineering graphene wrinkles for large enhancement of interlaminar friction enabled damping capability [J]. ACS Appl. Mater. Inter., 2019, 11(33): 30278
doi: 10.1021/acsami.9b09393
|
13 |
Li C J, Wang Y J, Yuan Z, et al. Construction of sacrificial bonds and hybrid networks in EPDM rubber towards mechanical performance enhancement [J]. Appl. Surf. Sci., 2019, 484: 616
doi: 10.1016/j.apsusc.2019.04.064
|
14 |
Gasperini A, Wang G J N, Molina-Lopez F, et al. Characterization of hydrogen bonding formation and breaking in semiconducting polymers under mechanical strain [J]. Macromolecules, 2019, 52(6): 2476
doi: 10.1021/acs.macromol.9b00145
|
15 |
Campanella A, Dohler D, Binder W H. Self-healing in supramolecular polymers [J]. Macromol. Rapid Comm., 2018, 39(17): 1700739
doi: 10.1002/marc.201700739
|
16 |
Shao C Y, Chang H L, Wang M, et al. High-strength, tough, and self-healing nanocomposite physical hydrogels based on the synergistic effects of dynamic hydrogen bond and dual coordination bonds [J]. ACS Appl. Mater. Inter., 2017, 9(34): 28305
doi: 10.1021/acsami.7b09614
|
17 |
Lee D W, Hong T K, Kang D, et al. Highly controllable transparent and conducting thin films using layer-by-layer assembly of oppositely charged reduced graphene oxides [J]. J. Mater. Chem., 2011, 21(10): 3438
doi: 10.1039/C0JM02270E
|
18 |
Che J F, Shen L Y, Xiao Y H. A new approach to fabricate graphene nanosheets in organic medium: combination of reduction and dispersion [J]. J. Mater. Chem., 2010, 20(9): 1722
doi: 10.1039/b922667b
|
19 |
Zhang J L, Yang H J, Shen G X, et al. Reduction of graphene oxide via L-ascorbic acid [J]. Chem. Commun., 2010, 46(7): 1112
doi: 10.1039/B917705A
|
20 |
Park H S, Hong C K. Anion exchange membrane based on sulfonated poly (styrene-ethylene-butylene-styrene) copolymers [J]. Polymers-Basel, 2021, 13(10): 1669
|
21 |
Liu J, Wang S, Tang Z H, et al. Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis-1,4-polyisoprene toward a high-performance elastomer [J]. Macromolecules, 2016, 49(22): 8593
doi: 10.1021/acs.macromol.6b01576
|
22 |
Wang J F, Jin X X, Zhang X M, et al. Effect of tunable styrene content on achieving high-performance poly(styrene-b-ethylene-ran-butylene-b-styrene)/graphene oxide nanocomposites [J]. Compos. Sci. Technol., 2018, 164: 229
doi: 10.1016/j.compscitech.2018.05.041
|
23 |
Clark D C, Baker W E, Whitney R A. Peroxide-initiated comonomer grafting of styrene and maleic anhydride onto polyethylene: Effect of polyethylene microstructure [J]. J. Appl. Polym. Sci., 2001, 79(1): 96
doi: 10.1002/(ISSN)1097-4628
|
24 |
Chino K, Ashiura M. Themoreversible cross-linking rubber using supramolecular hydrogen-bonding networks [J]. Macromolecules, 2001, 34(26): 9201
doi: 10.1021/ma011253v
|
25 |
Zhan Y Q, Yang X L, Guo H, et al. Cross-linkable nitrile functionalized graphene oxide/poly(arylene ether nitrile) nanocomposite films with high mechanical strength and thermal stability [J]. J. Mater. Chem., 2012, 22(12): 5602
doi: 10.1039/c2jm15780b
|
26 |
Tetsuka H, Asahi R, Nagoya A, et al. Optically tunable amino-functionalized graphene quantum dots [J]. Adv. Mater., 2012, 24(39): 5333
doi: 10.1002/adma.201201930
|
27 |
Mei J, Liu W F, Huang J H, et al. Lignin-reinforced ethylene-propylene-diene copolymer elastomer via hydrogen bonding interactions [J]. Macromol. Mater. Eng., 2019, 304(4): 1800689
doi: 10.1002/mame.v304.4
|
28 |
Zeng S J, Ye L, Yan S J, et al. Amphibious hybrid nanostructured proton exchange membranes [J]. J. Membrane Sci., 2011, 367(1-2): 78
doi: 10.1016/j.memsci.2010.10.041
|
29 |
Zhan Y Q, Yang X L, Guo H, et al. Cross-linkable nitrile functionalized graphene oxide/poly(arylene ether nitrile) nanocomposite films with high mechanical strength and thermal stability [J]. J. Mater. Chem., 2012, 22(12): 5602
doi: 10.1039/c2jm15780b
|
30 |
Kim N H, Kuila T, Lee J H. Simultaneous reduction, functionalization and stitching of graphene oxide with ethylenediamine for composites application [J]. J. Mater. Chem. A, 2013, 1(4): 1349
doi: 10.1039/C2TA00853J
|
31 |
Xu K M, Zhang F S, Zhang X L, et al. Molecular insights into hydrogen bonds in polyurethane/hindered phenol hybrids: evolution and relationship with damping properties [J]. J. Mater. Chem. A, 2014, 2(22): 8545
doi: 10.1039/C4TA00476K
|
32 |
Wang W Y, Liu Y M, Jin X, et al. Effect of polypyrrole modified carbon fiber on interfacial property of composite PPy-carbon fiber/epoxy [J]. Chin. J. Mater. Res, 2017, 32(3): 209
|
32 |
王闻宇, 刘亚敏, 金 欣 等. 聚吡咯修饰碳纤维/环氧树脂复合材料的界面剪切强度 [J]. 材料研究学报, 2018, 32(3): 209
doi: 10.11901/1005.3093.2017.422
|
33 |
Li C J, Yuan Z, Ye L. Fcile construction of enhanced multiple interfacial interactions in EPDM/zinc dimethacrylate (ZDMA) rubber composites: highly reinforcing effect and improvement mechanism of sealing resilience [J]. Compos. Part A-Appl. S., 2019, 126: 105580
doi: 10.1016/j.compositesa.2019.105580
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|