Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (3): 235-240    DOI: 10.11901/1005.3093.2021.448
  研究论文 本期目录 | 过刊浏览 |
2060铝锂合金厚板的各向异性
刘东洋1, 童广泽1, 高文理1(), 王卫凯2
1.湖南大学材料科学与工程学院 长沙 410082
2.中国航发北京航空材料研究院 北京 100095
Anisotropy of 2060 Al-Li Alloy Thick Plate
LIU Dongyang1, TONG Guangzhe1, GAO Wenli1(), WANG Weikai2
1.College of Materials Science and Engineering, Hunan University, Changsha 410082, China
2.AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
引用本文:

刘东洋, 童广泽, 高文理, 王卫凯. 2060铝锂合金厚板的各向异性[J]. 材料研究学报, 2023, 37(3): 235-240.
Dongyang LIU, Guangzhe TONG, Wenli GAO, Weikai WANG. Anisotropy of 2060 Al-Li Alloy Thick Plate[J]. Chinese Journal of Materials Research, 2023, 37(3): 235-240.

全文: PDF(9089 KB)   HTML
摘要: 

使用OM、TEM和EBSD等手段和测试室温拉伸性能,研究了2060铝锂合金厚板的组织和力学性能的各向异性。结果表明:1) 0°方向的强度最高,延伸率和断面收缩率较低;45°方向的强度最低,延伸率和断面收缩率最高;90°方向的强度稍低于0°方向,延伸率和断面收缩率最低。2) 在0°、45°和90°方向合金的主要析出相为T1相,在0°和45°方向还析出了θ'相和少量的球形δ'相。在0°方向析出相数量最多且分布均匀,在45°方向析出相的尺寸较大,大部分T1相粗化为板片状,在90°方向析出相的数量较少,但是T1相的尺寸明显比45°方向的更小。3) 2060铝锂合金厚板45°方向的织构强度最高,出现了强再结晶织构P{011}<122>;在0°方向织构强度仍较高,以再结晶P{011}<122>为主,还有较弱的形变织构Copper{112}<111>;90°方向的织构强度相对较弱,以形变织构Copper {112}<111>和形变织构S{123}<634>为主。

关键词 金属材料各向异性力学性能微观组织织构    
Abstract

The anisotropy of microstructure and mechanical properties of 2060 Al-Li alloy thick plate was investigated by OM, TEM, EBSD and tensile properties at room temperature. The main results are as follows: 1) The strength in 0° direction is the highest, the elongation and the section shrinkage are lower; The strength in 45° direction is the lowest, but the elongation and the section shrinkage are the highest; The strength in 90° direction is slightly lower than 0° direction, and the elongation and section shrinkage are the lowest. 2) The main precipitated phase of the alloy in the directions of 0°, 45° and 90° is T1 phase, and θ' phase and a small amount of spherical δ' phase are also found in 0° and 45° directions. In the direction of 0°, the number of precipitated phases is the largest and the distribution is uniform. In the direction of 45°, the size of precipitated phases is large, and most of THE T1 phase is coarse and flake. In the direction of 90°, the number of precipitated phases is relatively small, but the size of T1 phase is significantly smaller than that in the direction of 45°. 3) 2060 Al-Li alloy thick plate has the highest texture strength at 45° direction, and a strong recrystallization texture P{011}<122> appears.The texture strength is still high in the direction of 0°, mainly recrystallized P{011}<122>, there is also a weak deformation texture copper {112} <111>; The texture strength in the 90° direction is relatively weak, and the deformation texture Copper {112}<111> and deformation texture S{123}<634> are the main textures.

Key wordsmetallic materials    anisotropy    mechanical properties    microstructure    texture
收稿日期: 2021-08-13     
ZTFLH:  TG146.2+1  
通讯作者: 高文理,教授,wenligaohd@163.com,研究方向为高性能铝合金研发、成形及应用
Corresponding author: GAO Wenli, Tel: 13873110708, E-mail: wenligaohd@163.com
作者简介: 刘东洋,男,1996年生,硕士生
ElementCuLiMgAgMnZrZnAl
Proportion3.751.150.750.30.250.120.32Bal
表1  2060 铝锂合金的实测成分
图1  取样示意图和标准拉伸试棒的尺寸
Sample No.σb / MPaσ0.2 / MPaδ / %Z/%
IPA /%4.39.022.436.2
626.3605.38.816.4
45°580528.79.622.9
90°618.7573.36.112.8
表2  2060铝锂合金不同方向的室温拉伸性能
图2  2060合金不同方向的金相组织
图3  2060铝锂合金不同方向的TEM显微组织及扫透照片
图4  厚板不同方向的(001)、(111)、(110)极图
1 Yang S J, Lu Z, Su B, et al. Research progress of Al-Li alloy [J]. Materials Engineering, 2001, (5): 44.
1 杨守杰, 陆 政, 苏 彬 等. 铝锂合金研究进展 [J]. 材料工程, 2001, (5): 44
2 Garmestani H., Kalidindi S. R., Williams L., et al. Modeling the evolution of anisotropy in Al-Li alloys: application to Al-Li 2090-T8E41 [J]. International Journal of Plasticity, 2002, 18: 1373
doi: 10.1016/S0749-6419(01)00073-0
3 El-Aty A A, Yong X, Guo X, et al. Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al-Li alloys: A review [J]. Journal of Advanced Research, 2018, 10(C): 49
doi: 10.1016/j.jare.2017.12.004
4 Zhao Z L, Chen Z, Liu L. The effect of precipitates on anisotropy of Al-Li alloys 2090 and 2090+Ce [J]. Advanced Materials Research, 2010, 97-101: 496
doi: 10.4028/www.scientific.net/AMR.97-101
5 Cho K K, Kwun S I, Chung Y H, et al. Effects of grain shape and texture on the yield strength anisotropy of Al-Li alloy sheet [J]. Scripta Materialia, 1999, 40(6): 651
doi: 10.1016/S1359-6462(98)00481-3
6 Wu Z, Lu Z, Liu S G, et al. Effect of trace Ag on microstructure and mechanical properties of ZL114A aluminum alloy [J]. Materials Engineering, 2021, 49 (1): 82.
6 吴 桢, 陆 政, 刘闪光 等. 微量Ag对ZL114A铝合金组织和力学性能的影响 [J]. 材料工程, 2021, 49(1): 82
7 Jata K V, Hopkins A K, Rioja R J. The anisotropy and texture of Al-Li alloys [J]. Materials Science Forum, 1996, 217-222: 647
doi: 10.4028/www.scientific.net/MSF.217-222
8 Liu Z Y, Deng X T, Wang Y Z. Effect of pulsed current on dynamic recrystallization kinetics of 2091 Al-Li alloy [J]. Chinese Journal of Materials Research, 2001, 15(3): 358
8 刘志义, 邓小铁, 王引真. 脉冲电流对2091铝锂合金动态再结晶动力学的影响 [J]. 材料研究学报, 2001, 15(3): 358
9 Mahalingam K, Gu B P, Liedl G L, et al. Coarsening of δ'(Al3Li) precipitates in binary Al-Li alloys [J]. Acta Metallurgica, 1987, 35(2): 483
doi: 10.1016/0001-6160(87)90254-9
10 Wu Y, Wang G Z, Song Z J, et al. Effect of aging treatment on microstructure and properties of rapidly solidified Al-Li-Cu and Al-Li-Cu-Zr alloys [J]. Chinese Journal of Materials Research, 1993, 7(4): 298
10 吴 越, 王国志, 宋治鉴 等. 时效处理对快速凝固Al-Li-Cu及Al-Li-Cu-Zr合金结构与性能的影响 [J]. 材料研究学报, 1993, 7(4): 298
11 Xu J. Microstructure evolution and mechanical properties of 2A66 Al-Li alloy by reciprocating upsetting and extrusion [D]. Changsha: Hunan University, 2016
11 许 娟. 往复镦2A66铝锂合金的组织演变及力学性能研究 [D]. 长沙: 湖南大学, 2016
12 Lei W, Liu X, Wang W, et al. On the influences of Li on the microstructure and properties of hypoeutectic Al-7Si alloy [J]. Journal of Alloys & Compounds, 2017: S0925838817315177
13 Li H Y, Ou L, Zheng Z Q. Anisotropy of 2195 Al-Li alloy [J]. Materials Engineering, 2005, (10): 31
13 李红英, 欧 玲, 郑子樵. 2195 铝锂合金各向异性研究 [J]. 材料工程, 2005, (10): 31
14 Zheng X F, Lu Z, Gao W L, et al. Study on anisotropy of 2A66 aluminum-lithium alloy sheet [J]. Materials Engineering, 2017, 45(7): 7
14 张显峰, 陆 政, 高文理 等. 2A66 铝锂合金板材各向异性研究 [J]. 材料工程, 2017, 45(7): 7
15 Fan C P, Zheng Z Q, Jia M, et al. Microstructure, tensile properties and fracture toughness of 2397 Al-Li alloy [J]. Rare Metal Materials and Engineering, 2015, 44(1): 91
15 范春平, 郑子樵, 贾 敏 等. 2397 铝锂合金显微组织、拉伸性能和断裂韧性研究 [J]. 稀有金属材料与工程, 2015, 44(1): 91
16 Wang J T. Study on anisotropy and fatigue properties of 2297-T87 Al-Li alloy thick plate [D]. Changsha: Hunan University, 2018
16 王俭堂. 2297-T87铝锂合金厚板各向异性和疲劳性能研究 [D]. 长沙: 湖南大学, 2018
17 Li G A, Wang L, Hao M, et al. Microstructure and fatigue damage behavior of 2060 Al-Li alloy sheet [J]. Journal of Northwest University of Technology, 2020, 38(2): 161
17 李国爱, 王 亮, 郝 敏 等. 2060铝锂合金薄板组织特征及疲劳损伤行为 [J]. 西北工业大学学报, 2020, 38(2): 161
18 Zhao Z L, Liu L, Chen Z. Co-strengthening contribution of δ' and T1 phases of Al-Li alloy 2090 [J]. Chinese Journal of Nonferrous Metals, 2006, 16(1): 89
18 赵志龙, 刘 林, 陈 铮. 2090 铝锂合金中δ'相和T1相的复合强化作用 [J]. 中国有色金属学报, 2006, 16(1): 89
19 Torre F H D, Gazder A A, Gu C F, et al. Grain size, misorientation, and texture evolution of copper processed by equal channel angular extrusion and the validity of the Hall-Petch relationship [J]. Metallurgical & Materials Transactions A, 2007, 38(5): 1080
20 Cao Y L. Study on heat treatment process and anisotropy of 2A66 aluminum-lithium alloy [D]. Changsha: Hunan University, 2015
20 曹亚雷. 2A66铝锂合金热处理工艺及其各向异性的研究 [D]. 长沙: 湖南大学, 2015
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.