Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (2): 145-151    DOI: 10.11901/1005.3093.2021.549
  研究论文 本期目录 | 过刊浏览 |
镍基高温合金GH4169的热机械疲劳行为
钱春华(), 崔海涛, 温卫东
南京航空航天大学能源与动力学院 南京 210016
Investigation on Thermo-mechanical Fatigue Behavior of GH4169 Alloy
QIAN Chunhua(), CUI Haitao, WEN Weidong
College of Energy and Power Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China
引用本文:

钱春华, 崔海涛, 温卫东. 镍基高温合金GH4169的热机械疲劳行为[J]. 材料研究学报, 2023, 37(2): 145-151.
Chunhua QIAN, Haitao CUI, Weidong WEN. Investigation on Thermo-mechanical Fatigue Behavior of GH4169 Alloy[J]. Chinese Journal of Materials Research, 2023, 37(2): 145-151.

全文: PDF(9314 KB)   HTML
摘要: 

在不同温度区间、不同条件下进行GH4169合金的热机械疲劳实验测试其热机械疲劳数据,研究了这种合金的热机械疲劳行为。结果表明:GH4169合金在热机械条件下的迟滞回线具有明显的拉压不对称性;同相位时材料承受压应力,反相位时承受拉应力。拉应力,是影响疲劳寿命的主要因素。应变幅较高时GH4169合金出现平均应力松弛,在高温半周为先循环软化后循环稳定,在低温半周始终趋于循环稳定。

关键词 金属材料热机械疲劳GH4169循环应力应变特性响应特性    
Abstract

The thermo-mechanical fatigue behavior of GH4169 alloy was investigated via MTS809 fatigue testing machine by applied multiple test loads at different temperature range. It is found that the hysteresis loops of GH4169 alloy have obvious asymmetry in tension and compression under thermo-mechanical condition. The material bears compressive stress when the mechanical strain amplitude in phase, whilst tensile stress for out of phase. The tensile stress is the main cause affecting the fatigue life. The average stress relaxation occurs at higher strain amplitude. In the high temperature half cycle, the alloy softens first and then becomes stable. In the low temperature half cycle, the alloy tends to be stable.

Key wordsmetallic materials    thermo-mechanical fatigue    GH4169    cyclic stress-strain characteristics    cyclic stress response
收稿日期: 2021-09-22     
ZTFLH:  TB 302.3  
作者简介: 钱春华,男,1984年生,博士生
CCrMoAlTiNbFeSiBPMnSNi
0.0318.923.30.561.005.3517.60.070.0110.0220.020.002Bal.
表1  GH4169合金的化学成分
图1  试件尺寸
PhaseΔT/℃12Δεm/%T/sNΔεp/%σmax/MPaσmin/MPaσm/MPa
IP

200~

450

0.612527010.440406-600-194
0.717470.442504-723-219
0.81030.446580-866-286
0.9550.898636-736-100
IP

400~

650

0.61001650.105840-998-158
0.6125500.103735-937-202
0.6200270.068820-1030-210
OP

400~

650

0.551251960.471816-705111
0.61251700.3931118-868250
表2  不同实验条件下的热机械疲劳实验结果
图2  不同试验条件下的稳定滞回曲线
图3  不同实验条件下的滞回曲线
图4  循环应力响应曲线
图5  应变-寿命关系
图6  周期-寿命关系
图7  GH4169的断口形貌(同相位、应变幅±0.6%、400~650℃)
图8  GH4169的断口形貌(反相位、应变幅±0.6%、400~650℃)
1 Zhuang J Y. Wrought Superalloy GH4169 [M]. Beijing: Metallurgical Industry Press, 2006
1 庄景云. 变形高温合金GH4169 [M]. 北京, 冶金工业出版社, 2006
2 Qi H. Development and technology of Inconel718 (GH4169) superalloy [J]. Materials Engineering, 2012, (8): 92
2 齐 欢. Inconel718(GH4169)高温合金的发展与工艺 [J]. 材料工程, 2012, (8): 92
3 Schafrik R, Ward D. Application of alloy 718 in GE aircraft engines: past, present and next five years [A]. Superalloys 718, 625, 706 and Various Derivatives [C]. Warrendale: The Minerals, Metals & Materials Society, 2001: 1
4 Paulonis D, Schirra J. Alloy 718 at pratt & whitney-historical perspective and future challenges [A]. Superalloys 718, 625, 706 and Various Derivatives [C]. Warrendale: The Minerals, Metals & Materials Society, 2001: 13
5 Barker J F. The initial years of alloy 718 [A]. Superalloys 718-Metallurya and Applications [C]. Warrendale: The Minerals, Metals & Materials Society, 1989: 269
6 Beck T, Pitz G, Lang K H, et al. Thermal-mechanical and isothermal fatigue of IN792 CC [J]. Mater. Sci. Eng. A, 1997, 234-236: 719
doi: 10.1016/S0921-5093(97)00281-5
7 Marcel R. Thermomechanical fatigue behavior of the intermetallic γ-TiAl alloy TNB-V5 with different microstructures [J]. Metallurgical and Materials Transaction A, 2010, 41(3): 717
doi: 10.1007/s11661-009-0119-4
8 Kraft S, Zauter R, Mughrabi H. Aspects of high-temperature low-cycle thermomechanical fatigue of a single crystal nickel-base superalloy [J]. Fatigue Fract. Eng. Mater. Struct., 1993, 16(2): 237
doi: 10.1111/j.1460-2695.1993.tb00755.x
9 Boismier D A, Sehitoglu H. Thermo-mechanical fatigue of Mar-M247 [J]. Part-life prediction. Trans. ASME J. Eng. Mater. Technol, 1990, 112(1): 68
10 Evans W J, Screech J E, Wllliams S J. Thermo-mechanical fatigue and fracture of INCO718 [J]. International Journal of Fatigue, 2008, (30): 67
11 Jacobsson L, Persson C, Melin S. Thermo-mechanical fatigue crack propagation experiments in Inconel 718 [J]. International Journal of Fatigue, 2009, (31): 318
12 Moverare J J, Gustafsson D. Hold-time effect on the thermo-mechanical fatigue crack growth be-haviour of Inconel 718 [J]. Materials Science and Engineering A, 2011, (528): 60
13 Schlesinger M, Seifert T, Preussner J. Experimental investigation of the time and temperature dependent growth of fatigue cracks in Inconel 718 and mechanism based lifetime prediction [J]. International Journal of Fatigue, 2017, (99): 42
14 Zhang G D, Su B. Thermomechanical fatigue properties and life prediction of IC10 alloy [J]. Chinese Journal of Nonferrous Metals, 2009, 19(1): 62
14 张国栋, 苏 彬. IC10合金热机械疲劳性能与寿命预测 [J]. 中国有色金属学报, 2009, 19(1): 62
15 He K, Zhou J. Thermal mechanical fatigue properties of 316LN stainless steel for nuclear power [J]. Nuclear Power Engineering, 2016, (4): 48
15 何 琨, 周 军. 核电用316LN不锈钢的热机械疲劳性能研究 [J]. 核动力工程, 2016, (4): 48
16 Liu F, Ai S H. Study on thermomechanical fatigue behavior of cast nickel base superalloy K417 [J]. Acta Metallurgica Sinica, 2001, 37(3): 367
16 刘 峰, 艾素华. K417铸造镍基高温合金热机械疲劳行为的研究 [J]. 金属学报, 2001, 37(3): 367
17 Wang J G, Xu S P. Effect of heating rate on thermomechanical fatigue properties [J]. Journal of Beijing University of Science and Technology, 2001, 23(s): 45
17 王建国, 徐世平. 升温速率对热机械疲劳性能的影响 [J]. 北京科技大学学报, 2001, 23(): 45
18 Wang Y C. Study on thermomechanical fatigue behavior and micromechanism of nickel base superalloy [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2004
18 王跃臣. 镍基高温合金热机械疲劳行为及微观机制研究 [D]. 沈阳: 中国科学院金属研究所, 2004
19 Deng W K, Xu J H, Jiang L. Thermomechanical fatigue properties of IN718 nickel base superalloy [J]. Chinese Journal of Nonferrous Metals, 2019
19 邓文凯, 徐睛昊, 江 亮. IN718镍基高温合金的热机械疲劳性能 [J]. 中国有色金属学报, 2019
20 Xiao L, Chen D L, Chaturvedi M C. Shearing of γ″ precipitates and formation of planar slip bands in Inconel 718 during cyclic deformation [J]. Scripta Materialia, 2005, 52(7): 603
doi: 10.1016/j.scriptamat.2004.11.023
21 An J L. Effect of long term aging on microstructure evolution and low cycle fatigue behavior of GH4169 alloy [J]. Acta Metallurgica Sinica, 2015, (7): 835
21 安金岚. 长期时效对GH4169合金组织演化及低周疲劳行为的影响 [J]. 金属学报, 2015, (7): 835
22 Prakash D G L, Walsh M J, Maclachlan D, et al. Crack growth micro-mechanisms in the IN718 alloy under the combined influence of fatigue, creep and oxidation [J]. International Journal of Fatigue, 2009, 31(11): 1966
doi: 10.1016/j.ijfatigue.2009.01.023
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.