Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (11): 827-836    DOI: 10.11901/1005.3093.2022.599
  研究论文 本期目录 | 过刊浏览 |
基于组织和结构调控9CrV钢大尺寸活塞性能的优化
王磊1, 张博1, 张宝燕2, 刘杨1(), 宋秀1, 李永胜2
1.东北大学材料各向异性与织构教育部重点实验室 沈阳 110819
2.山东天瑞重工有限公司 潍坊 261061
Properties Optimization of 9CrV Steel for Large Piston Based on Microstructure and Structure Control
WANG Lei1, ZHANG Bo1, ZHANG Baoyan2, LIU Yang1(), SONG Xiu1, LI Yongsheng2
1.Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110819, China
2.Shandong Tianrui Heavy Industry Co. Ltd., Weifang 261061, China
引用本文:

王磊, 张博, 张宝燕, 刘杨, 宋秀, 李永胜. 基于组织和结构调控9CrV钢大尺寸活塞性能的优化[J]. 材料研究学报, 2023, 37(11): 827-836.
Lei WANG, Bo ZHANG, Baoyan ZHANG, Yang LIU, Xiu SONG, Yongsheng LI. Properties Optimization of 9CrV Steel for Large Piston Based on Microstructure and Structure Control[J]. Chinese Journal of Materials Research, 2023, 37(11): 827-836.

全文: PDF(29496 KB)   HTML
摘要: 

研究了热处理和结构调控对直径为190 mm的9CrV钢仿形活塞不同部位显微组织和力学性能的影响及其机理。结果表明,经850℃×5 h-230℃×4 h等温淬火、230 ℃×4 h回火后,9CrV钢活塞的表层至心部依次为下贝氏体、贝氏体+索氏体+M/A岛、珠光体类组织;表层的抗拉强度和冲击吸收功均高于心部。淬火温度降至800℃、回火温度升至400℃,使表层的抗拉强度提高到1610 MPa、冲击吸收功降低到7.4 J,心部的冲击韧性有所提高但是强度降低。经800℃× 5 h-230℃×4 h 等温淬火、230℃×4 h+400℃×4 h二次回火后,表层的抗拉强度达到1672 MPa、冲击吸收功达到9.8 J,且改善了心部的冲击韧性,使活塞整体的强度与韧性趋于平衡。淬火加热温度的降低保留了适量的未溶碳化物颗粒,阻碍了奥氏体的长大和细化了晶粒,从而提高了钢的强度。在230℃回火使残余奥氏体转化为下贝氏体、防止在400℃回火(提高心部韧性)时生成薄壳碳化物和平衡了整体韧性。综合热处理和活塞结构的调控,实现了大尺寸活塞的整体强韧性平衡。

关键词 金属材料9CrV钢大尺寸仿形活塞力学性能二次回火    
Abstract

In order to solve the imbalance between strength and toughness in different cross sections of a large size piston for hydraulic crushing hammer, the influence of heat treatment and microstructural adjustmen/control on the microstructure and mechanical properties of 9CrV steel near-real shaped piston with a diameter of 190 mm was studied. The results show that when the piston were austenitized at 850℃ for 5 h and quenched at 230℃ for 4 h, then tempered at 230℃ for 4 h, the microstructure of a piston consists of bainite, bainite + troostite + residual austenite and pearlite respectively, from the surface to the core. The tensile strength of the piston surface layer is 1442 MPa, the impact absorbed energy is 11 J, the impact toughness in the piston core part is poor, and the impact toughness is the lowest at 2/3 R of the piston. When the austenitizing temperature is decreased to 800℃ and tempering temperature is increased to 400℃, the tensile strength of the piston surface layer increased to 1610 MPa, and the impact absorbed energy decreased to 7.4 J. The impact toughness of the piston core shows an increasing tendency, while the strength will decrease. When the piston is austenitized at 800℃ for 5 h and followed by quenching at 230℃ for 4 h, then tempering first at 230℃ for 4 h and then at 400℃ for 4 h, the tensile strength of the piston surface layer becomes 1672 MPa, the impact absorbed energy becomes 9.8 J. The impact toughness of piston core part has been improved, and the combination of strength and toughness of the piston tend to balance. It is found that with the lower austenitizing temperature a large number of undissolved carbide particles will be retained, it will hinder austenite growing, but refine grains. With the increasing tempering temperature, the dislocation tangles to pearlite ferrite will be restored, and the toughness of piston core can be improved. The carbon-rich residual austenite film in the bainite of piston surface layer is stable. When it is tempered at 400℃, the carbide thin film will precipitate during the decomposition of residual austenite, which is easy to become a rapid crack propagation path and reduce the impact toughness. The residual austenite was transformed into lower bainite by tempering at 230℃ to prevent the formation of thin-film carbides by tempered at 400℃ to improve the impact resistance of piston core, so that the toughness becomes balance in the different cross section parts of a piston. Based on the combination of optimizing and controlling of piston microstructure and heat treatment process, the strength and toughness of the piston are balanced.

Key wordsmetallic materials    9CrV steel    larger-size tracer piston    mechanical properties    twice tempering
收稿日期: 2022-11-14     
ZTFLH:  TG142.3  
基金资助:国家自然科学基金(U1708253);泰山产业领军人才计划项目(tscy20170318)
通讯作者: 刘 杨,教授,liuyang@mail.neu.edu.cn,研究方向为先进金属结构材料
Corresponding author: LIU Yang, Tel: (024)83672799, E-mail: liuyang@mail.neu.edu.cn
作者简介: 王 磊,男,1961年生,教授
CSiMnCrVSPFe
0.8650.3260.3071.8630.1010.0030.012Bal.
表1  9CrV钢的化学成分
No.Quenching temperature / ℃Quenching heating and holding time / hSalt bath temperature / ℃Salt bath insulation time / hTempering heating temperature / ℃Tempering holding time / hSecondary tempering heating temperature / ℃Secondary tempering holding time / h
1#850523042304--
2#800523044004--
3#8005230423044004
表2  9CrV钢的热处理参数
图1  9CrV钢活塞的表层、距表面12 mm处、距表面20 mm处、距表面24 mm处、距表面30 mm处以及心部的组织OM形貌
图2  9CrV钢活塞的表层、距表面12 mm处、距表面20 mm处、距表面24 mm处、 距表面30 mm处以及心部组织的SEM形貌
图3  不同热处理工艺条件下9CrV钢活塞各区域显微组织的SEM照片
图4  不同工艺热处理后9CrV钢活塞不同位置的硬度、屈服强度、抗拉强度以及冲击吸收功
图5  距活塞表层20 mm处的组织形貌
图6  不同热处理工艺9CrV钢距活塞表面不同位置处的珠光体片层间距
图7  不同热处理工艺9CrV钢活塞表层的冲击断口形貌
图8  不同热处理工艺9CrV钢活塞距表面30 mm处和过渡区冲击断口的形貌
图9  大尺寸活塞顶端开孔结构的示意图
1 Luo M. Current situation and development trend of domestic hydraulic crusher market [J]. Mechanical Engineering, 2004, 16(10):19
1 罗 铭. 国内液压破碎器市场现状及发展趋势 [J]. 机械工程, 2004, 16(10): 19
2 Zhang D J. Status and classification of hydraulic crushing hammer in China [J]. Jiangsu Metallurgy, 2008, 13(03): 4
2 张定军. 国内液压破碎锤的现状及分类 [J]. 江苏冶金, 2008, 13(03): 4
3 Wen Y M. Causes and countermeasures of piston failure of hydraulic crushing hammer [J]. Construction Machinery and Maintenance, 2006, 15(12): 149
3 温玉民. 液压破碎锤活塞失效的原因及对策 [J]. 工程机械与维修, 2006, 15(12): 149
4 Uesugi T. Recent development of bearing steel in Japan [J]. The Iron and Steel Institute of Japan, 1988, 28(11): 893
5 Yang G P, Chai R. Some key technologies for design and manufacture of hydraulic crushing hammer impact piston [J]. Machine Tool and Hydraulics, 2008, 36(6): 62
5 杨国平, 柴 睿. 液压破碎锤冲击活塞设计与制造的若干关键技术 [J]. 机床与液压, 2008, 36(6): 62
6 Zhou Z H, Gao L W, Xu T L, et al. Development and present situation analysis of hydraulic crushing hammer in China [J]. Construction Machinery, 2004, 42(8): 34
6 周志鸿, 高丽稳, 许同乐 等. 我国液压破碎锤发展与现状分析[J]. 工程机械, 2004, 42(8): 34
7 Li D H, Li Z M, Xiao M G, et al. Effect of deep cryogenic treatment on mechanical property and microstructure of a low carbon high alloy martensitic bearing steel during tempering [J]. Chinese Journal of Materials Research, 2019, 33(8): 561
doi: 10.11901/1005.3093.2019.095
7 李东辉, 李志敏, 肖茂果 等. 深冷处理对低碳高合金马氏体轴承钢力学性能及组织的影响 [J]. 材料研究学报, 2019, 33(8): 561
doi: 10.11901/1005.3093.2019.095
8 Zhao K L, Liu Y B, Yu X F, et al. Effect of solid solution and mesothermal phase transition treatment on microstructure and mechanical property of ball bearing steel 8Cr4Mo4V [J]. Chinese Journal of Materials Research, 2018, 32(3): 200
8 赵开礼, 刘永宝, 于兴福 等. 固溶温度对8Cr4Mo4V轴承钢的中温相转变和力学性能的影响 [J]. 材料研究学报, 2018, 32(3): 200
doi: 10.11901/1005.3093.2017.605
9 Wang L, Lu H Q, Zhang B Y, et al. Microstructure and mechanical properties of 9CrV steel controlled by heat treatment process [J]. Transactions of Materials and Heat Treatment, 2021, 42(11): 69
doi: 10.13289/j.issn.1009-6264.2021-0234
9 王 磊, 路昊青, 张宝燕 等. 热处理工艺调控9CrV钢显微组织及力学性能 [J]. 材料热处理学报, 2021, 42(11): 69
10 Tu M Y, Hsu C A, Wang W H, et al. Comparison of microstructure and mechanical behavior of lower bainite and tempered martensite in JIS SK5 steel [J]. Mater. Chem. Phys., 2008, 107(2-3): 418
doi: 10.1016/j.matchemphys.2007.08.017
11 Fang H S, Wang J J, Zheng Y K, et al. Source and formation mechanism of bainite carbides in 200Cr12 steel [J]. Acta. Metall. Sin., 1993(10): 17
11 方鸿生, 王家军, 郑燕康 等. 200Cr12钢下贝氏体碳化物来源及形成机制 [J]. 金属学报, 1993(10): 17
12 Wang L. Mechanical Properties of Materials[M]. Shenyang: Northeastern University Press, 2014
12 王 磊. 材料的力学性能 [M]. 沈阳: 东北大学出版社, 2014
13 Cui Y X, Wang C L. Analysis of Metal Fracture [M]. Harbin: Harbin Institute of Technology Press, 1998: 41
13 崔约贤, 王长利. 金属断口分析 [M]. 哈尔滨: 哈尔滨工业大学出版社, 1998: 41
14 Sankaran S, Sarma V S, Padmanabhan K A, et al. Low cycle fatigue behavior of a multiphase microalloyed medium carbon steel: comparison between fer-rite-pearlite and quenched and tempered microstructures [J]. Mater. Sci. Eng. A, 2003, 345(1-2): 328
doi: 10.1016/S0921-5093(02)00511-7
15 Cui Z Q, Liu B X. Metal Science and Principle of Heat Treatment [M]. Harbin: Harbin Institute of Technology Press, 2004
15 崔忠圻, 刘北兴. 金属学与热处理原理 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2004
16 Peng L G, Liu W J, Liu X H, et al. Experimental study on the effect of retained austenite on the impact toughness of a low-carbon martensite steel [J]. Advanced Materials Research, 2015, 1095: 119
doi: 10.4028/www.scientific.net/AMR.1095
17 Fang H S, Feng C, Zhang Y K, et al. Precipition of the carbides in lower bainite [J]. Acta. Metall. Sin., 2007(06): 583
17 方鸿生, 冯 春, 郑燕康 等. 下贝氏体中碳化物的析出 [J]. 金属学报, 2007(06): 583
18 Chakraborty J, Bhattacharjee D, Manna I. Austempering of bearing steel for improved mechanical properties [J]. Scr. Mater., 2008, 59(2): 247
doi: 10.1016/j.scriptamat.2008.03.023
19 Xu L J, Shi P Z, Zhang S L. Microstructure evolution mechanism of HSLA steel [J]. Journal of Iron and Steel Research, 2019, 31(11): 9
19 徐李军, 时朋召, 张淑兰. 低合金高强钢微观组织转变机制 [J]. 钢铁研究学报, 2019, 31(11): 9
20 Hu G L, Liu Z T, Wang P, et al. Temper bainite brittleness of structural steels [J]. Acta. Metall. Sin., 1989(02): 34
20 胡光立, 刘正堂, 王 平 等. 几种结构钢的回火贝氏体脆性 [J]. 金属学报, 1989(02): 34
21 Wu Y J, Zhou S B, Wu K M. Microstructure and properties of high carbon bainite steel at low temperature [J]. Journal of Iron and Steel Research, 2019, 31(12): 1058
21 吴亚杰, 周松波, 吴开明. 高碳贝氏体钢的低温转变组织与性能 [J]. 钢铁研究学报, 2019, 31(12): 1058
22 Wan X L, Hu F, Cheng L, et al. Influence of low-temperature bainite transformation on toughness of medium-carbon steel [J]. Journal of Iron and Steel Research, 2019, 31(10): 928
22 万响亮, 胡 锋, 成 林 等. 低温贝氏体转变对中碳钢韧性的影响 [J]. 钢铁研究学报, 2019, 31(10): 928
23 Yi L, Peng J M, Wang H B, et al. Effect of tempering on microstructure and mechanical properties of a nonquenched bainitic steel [J]. Mater. Sci. Eng. A, 2010, 527(15): 3433
doi: 10.1016/j.msea.2010.02.010
24 Sun S H, Zhao A M, Ding R, et al. Effect of heat treatment on microstructure and mechanical properties of quenching and partitioning steel [J]. Acta Metall. Sin. Engl. Lett., 2018, 31(2): 216
25 Xu Z B, Hui W J, Wang Z H, et al. Mechanical properties of a microalloyed bainitic steel after hot forging and tempering [J]. J. Iron Steel Res. Int., 2017, 24: 1085
doi: 10.1016/S1006-706X(17)30158-9
26 Korda A A, Muto Y, Miyashita Y, et al. In situ observation of fatigue crack retardation in banded ferrite-pearlite microstructure due to crack branching [J]. Scr. Mater., 2006, 54(11): 1835
doi: 10.1016/j.scriptamat.2006.02.025
27 Khiratkar V, Vaibhav N, Mishra K, et al. Effect of inter-lamellar spacing and test temperature on the Charpy impact energy of extremely fine pearlite [J]. Mater. Sci. Eng. A, 2019, 754: 622
doi: 10.1016/j.msea.2019.03.121
28 Wang X B, Liu C B, Qin Y M, et al. Effect of tempering temperature on microstructure and mechanical properties of nanostructured bainitic steel [J]. Mater. Sci. Eng. A, 2022, 832: 142357
doi: 10.1016/j.msea.2021.142357
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 潘新元, 蒋津, 任云飞, 刘莉, 李景辉, 张明亚. 热挤压钛/钢复合管的微观组织和性能[J]. 材料研究学报, 2023, 37(9): 713-720.
[8] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[9] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[10] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[11] 陈晶晶, 占慧敏, 吴昊, 朱乔粼, 周丹, 李柯. 纳米晶CoNiCrFeMn高熵合金的拉伸力学性能[J]. 材料研究学报, 2023, 37(8): 614-624.
[12] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[13] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[14] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[15] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.