Please wait a minute...
材料研究学报  2023, Vol. 37 Issue (11): 818-826    DOI: 10.11901/1005.3093.2022.596
  研究论文 本期目录 | 过刊浏览 |
Si9Cr型铁素体/马氏体钢析出相和力学性能的影响
李峰1,2,3, 汪建强1,2, 陈慧琴3, 孙明月1,2(), 徐斌1,2, 刘朝晖1,2
1.中国科学院金属研究所 中国科学院核用材料与安全评价重点实验室 沈阳 110016
2.中国科学院金属研究所 沈阳材料科学国家研究中心 沈阳 110016
3.太原科技大学材料科学与工程学院 太原 030024
Effect of Si on Precipitation Behavior of Precipitated Phases and Mechanical Property of 9Cr-type Ferritic/Martensitic Steel
LI Feng1,2,3, WANG Jianqiang1,2, CHEN Huiqin3, SUN Mingyue1,2(), XU Bin1,2, LIU Zhaohui1,2
1.Key Laboratory of Nuclear Materials and Safety, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2.Shenyang National Research Center for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3.Taiyuan University of Science and Technology, School of Materials Science and Engineering, Taiyuan 030024, China
引用本文:

李峰, 汪建强, 陈慧琴, 孙明月, 徐斌, 刘朝晖. Si9Cr型铁素体/马氏体钢析出相和力学性能的影响[J]. 材料研究学报, 2023, 37(11): 818-826.
Feng LI, Jianqiang WANG, Huiqin CHEN, Mingyue SUN, Bin XU, Zhaohui LIU. Effect of Si on Precipitation Behavior of Precipitated Phases and Mechanical Property of 9Cr-type Ferritic/Martensitic Steel[J]. Chinese Journal of Materials Research, 2023, 37(11): 818-826.

全文: PDF(23327 KB)   HTML
摘要: 

研究了Si含量对9Cr型铁素体马氏体 (F/M) 钢析出相和力学性能的影响。结果表明:在不同Si含量的9Cr型F/M钢中析出相均为M23C6MX和Laves相,Si能促进Laves相和M23C6型碳化物的析出。Si含量为0.9%~1.2%的这种钢其拉伸强度和延伸率略有降低,冲击性能维持稳定;Si含量为1.2%~1.8%时,Si的固溶强化和析出相的沉淀强化使钢的拉伸强度提高。但是,随着Si含量的进一步提高Laves相和M23C6型碳化物大量析出,使其冲击功显著衰退。

关键词 金属材料铁素体/马氏体钢Si含量析出相拉伸强度冲击性能    
Abstract

Ferritic martensitic (F/M) steel is one of the main candidates for structural components of lead-bismuth fast reactors. Increasing the Si content can enhance the resistance of the material to Pb-Bismuth corrosion, but it also affects the precipitation behavior of precipitates and mechanical properties of the material. In this paper, four ingots of F/M steels with different Si contents (0.9%, 1.2%, 1.5% and 1.8% by mass fraction) were vacuum melted and cast, and then forged to generate blocks, afterwards, the steels were subjected to the following heat treatment process: water cooling after solution treatment at 1050℃ for 30 min, and then air cooling after tempering at 760℃ for 90 min. The effect of the Si addition on the precipitation behavior of precipitates and mechanical properties of 9Cr type F/M steel was carefully examined. The results show that the precipitated phases of 9Cr type F/M steel with different Si contents are M23C6, MX and Laves phases, and the presence of Si can promote the precipitation of Laves phase and M23C6 carbide. When the Si content is 0.9%~1.2%, the tensile strength and elongation of the steel are slightly reduced, and the impact performance remains stable; when the Si content is 1.2%~1.8%, the solid solution strengthening of Si and the precipitation strengthening of the precipitates make the strength of the steel increase, but with the increase of Si content, Laves phase and M23C6 type carbide precipitates a lot, and the impact energy decreases significantly.

Key wordsmetallic materials    ferritic martensitic steel    Si content    precipitates    tensile strength    impact property
收稿日期: 2022-11-10     
ZTFLH:  TG142.1  
基金资助:国家重点研发计划(2018YFA0702900);中核集团领创科研项目(E24L809);中国科学院金属研究所创新基金(2022-PY12)
通讯作者: 孙明月,研究员,mysun@imr.ac.cn,研究方向为金属构筑成形技术
Corresponding author: SUN Mingyue, E-mail: mysun@imr.ac.cn
作者简介: 李 峰,男,1997年生,硕士生
AlloySiCVCrMnWTaFe
0.9Si0.910.160.208.560.591.480.14Bal.
1.2Si1.220.170.208.560.581.500.14Bal.
1.5Si1.520.210.198.570.591.480.15Bal.
1.8Si1.810.230.208.500.601.460.15Bal.
表1  不同Si含量F/M钢的实测化学成分
图1  不同Si含量F/M钢的背散射电子图像
AlloyCCrSiFeVTaW
0.9Si11.264.362.0125.150.8750.635.73
1.2Si10.593.892.1522.210.7654.415.98
1.5Si10.405.122.2421.030.8153.625.78
1.8Si8.975.372.2733.070.8543.236.24
表2  Laves相元素扫描结果
图2  不同Si含量F/M钢中析出相的二次电子图像
图3  F/M钢中析出相的TEM图像
图4  1.2Si钢中典型析出相的EDS面分布
图5  1.2Si钢的中杆状析出相和其中选定区域的高分辨图像和选区电子衍射
图6  F/M钢中M23C6的平均长度和面积分数
图7  F/M钢的室温拉伸性能
图8  F/M钢的室温冲击性能
图9  不同Si含量F/M钢冲击断口的二次电子图像
1 Zohuri Bahman. 6 - Generation IV nuclear reactors [J]. Woodhead Publishing Series in Energy, 2020: 213
2 Zhang J. A review of steel corrosion by liquid lead and lead-bismuth [J]. Corros. Sci, 2009, 51: 1207
doi: 10.1016/j.corsci.2009.03.013
3 Yao S W, Wang H, Wang S L. Research and application of special ceramic materials [J]. Yunnan Metallurgy, 2007(04): 53
3 尧世文, 王 华, 王胜林. 特种陶瓷材料的研究与应用 [J]. 云南冶金, 2007(04): 53
4 Lv Z. Development and foresight of nanostructured ODS steel for the first wall of fusion reactors [J]. Atomic Energy Science and Technology, 2011, 45(9): 1105
4 吕 铮. 聚变堆第一壁用纳米结构ODS钢的发展与前瞻 [J]. 原子能科学技术, 2011, 45(9): 1105
5 Buckthorpe D, Aitkaliyeva A, HE L, et al. Structural Materials for Generation Ⅳ Nuclear Reactors [M]. UK: Woodhead Publishing, 2017
6 Kurata Y. Corrosion behavior of Si-enriched steels for nuclear applications in liquid lead-bismuth [J]. J. Nucl. Mater., 2013, 437(1-3): 401
doi: 10.1016/j.jnucmat.2013.02.022
7 Kondo M, Takahashi M. Corrosion resistance of Si- and Al-rich steels in flowing lead-bismuth [J]. J. Nucl. Mater., 2006, 356(1): 203
doi: 10.1016/j.jnucmat.2006.05.019
8 Park J J, Butt D P, Beard C A. Review of liquid metal corrosion issues for potential containment materials for liquid lead and lead-bismuth eutectic spallation targets as a neutron source [J]. Nucl. Eng. Des., 2000, 196(3): 315
doi: 10.1016/S0029-5493(99)00303-9
9 Tortorelli P F, Chopra O K. Corrosion and compatibility considerations of liquid metals for fusion reactor applications [J]. J. Nucl. Mater., 1981, 103: 621
doi: 10.1016/0022-3115(82)90668-7
10 Muller G, Heinzel A, Markov V, et al. Results of steel corrosion tests in flowing liquid Pb/Bi at 420-600℃ after 2000 h [J]. J. Nucl. Mater., 2002, 301: 40
doi: 10.1016/S0022-3115(01)00725-5
11 Chen S H, Rong L J. Effect of silicon on the microstructure and mechanical properties of reduced activation ferritic/martensitic steel [J]. J. Nucl. Mater., 2015, 459: 13
doi: 10.1016/j.jnucmat.2015.01.004
12 Anya C C, Baker T N. The effect of silicon on the grain size and the tensile properties of low carbon steels [J]. Mater. Sci. Eng.A, 1989, 118: 197
13 Chen G Q, Yang J, Wang Q, et al. Effect of Si elements on the evolution of the second phase organization of 11.5CrMox Si ferritic martensitic steel [J]. Hot Working Technology, 2020, 49(24): 41
13 陈国清, 杨 俭, 王 清 等. Si元素对11.5CrMox Si铁素体马氏体钢第二相组织演变的影响 [J]. 热加工工艺, 2020, 49(24): 41
14 Hosoi Y, Wade N, Kunimitsu S, et al. Precipitation behavior of laves phase and its effect on toughness of 9Cr-2Mo ferritic-martensitic steel [J]. J. Nucl. Mater., 1986, 141-143: 461
doi: 10.1016/S0022-3115(86)80083-6
15 Kipelova A, Kaibysheva R, Belyakova A, et al. Microstructure evolution in a 3%Co modified P911 heat resistant steel under tempering and creep conditions [J]. Mater. Sci. Eng. A, 2011, 528(3): 1280
doi: 10.1016/j.msea.2010.10.006
16 Prat O, Garcia J, Rojas D, et al. The role of Laves phase on microstructure evolution and creep strength of novel 9%Cr heat resistant steels [J]. Intermetallics, 2013, 32: 362
doi: 10.1016/j.intermet.2012.08.016
17 Xia Z X, Wang C Y, Zhao Y F, et al. Laves phase formation and its effect on mechanical properties in P91 steel [J]. Acta Metall. Sin., 2015, 28(10): 1238
doi: 10.1007/s40195-015-0318-5
18 Aghajani A, Richter F, Somsen C, et al. On the formation and gro-wth of Mo-rich Laves phase particles during long-term creep of a 12% chromium tempered martensite ferritic steel [J]. Scr. Mater., 2009, 61(11): 1068
doi: 10.1016/j.scriptamat.2009.08.031
19 Dimmler D, Weinert P, Kozeschnik E, et al. Quantification of the Laves phase in advanced 9-12%Cr steels using a standard SEM [J]. Mater. Charact. 2004, 5(51): 341
20 Isik M I, Kostka A, Eggeler G. On the nucleation of Laves phase particles during high-temperature exposure and creep of tempered martensite ferritic steels [J]. Acta Mater., 2014, 81: 230
doi: 10.1016/j.actamat.2014.08.008
21 Isik M I, Kostka A, Yardley V A, et al. The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12%Cr tempered martensite ferritic steels [J]. Acta Mater., 2015, 90: 94
doi: 10.1016/j.actamat.2015.01.027
22 Xu Y T, Nie Y H, Wang M J, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging [J]. Acta. Mater., 2017, 131: 110
doi: 10.1016/j.actamat.2017.03.045
23 Zhang L L. Study on the mechanism of Si element innuclear SIMP steel [D]. Hefei: University of Science and Technology of China, 2021
23 张玲玲. 核用SIMP钢中Si元素的作用机理研究 [D]. 合肥: 中国科学技术大学, 2021
24 Zhou J, Qiu S Y, Qiu R S, et al. Effect of Si content on microstructure and mechanical properties of 9%Cr ferritic martensitic steel[J]. Atomic Energy Science and Technology, 2022, 56(3): 520
24 周 军, 邱绍宇, 邱日盛 等. Si含量对9%Cr铁素体马氏体钢微观结构和力学性能的影响 [J]. 原子能科学技术, 2022, 56(3): 520
25 Chen J G, Liu C X, Wei C, et al. Effects of isothermal aging on microstructure and mechanical property of low-carbon RAFM steel[J]. Acta Metall. Sin., 32: 1151
26 Xu X F, Li X Y, Zhang B. Stabilizing nanograined Fe-Cr alloy by Si-assisted grain boundary segregation [J]. J. Mater. Sci. Technol., 2023, 134: 223
doi: 10.1016/j.jmst.2022.06.028
27 Sklenička V, Kuchařová K, Svoboda M, et al. Long-term creep behavior of 9-12%Cr power plant steels [J]. Mater. Charact., 2003, 51(1): 35
doi: 10.1016/j.matchar.2003.09.012
28 Zhu Z F, Zhao Z Z, Zhao A M, et al. Effect of Si on the organizational properties of high-strength hot-rolled duplex steels [J]. Steel Rolling, 2011, 28(2): 16
28 祝志峰, 赵征志, 赵爱民 等. Si对高强热轧双相钢组织性能的影响 [J]. 轧钢, 2011, 28(2): 16
29 Seung Lee Jae, Hassan Ghassemi Armaki, Kouichi Maruyamaet al. Causes of breakdown of creep strength in 9Cr-1.8W-0.5Mo-VNb steel [J]. Mater. Sci. Eng.A., 2006, 428(1-2): 270
30 Abe Fujio. Creep rates and strengthening mechanisms in tungsten-strengthened 9Cr steels[J]. Mater. Sci. Eng.A., 2001, 319-321: 770
31 Hu P, Yan W, Shan Y Y, et al. Organizational evolution and mechanical properties of high-Cr ferritic heat-resistant steel during aging [J]. Guangdong Electric Power, 2011, 24(11): 6
31 胡 平, 严 伟, 单以银 等. 高Cr铁素体耐热钢时效过程中的组织演变与力学性能研究 [J]. 广东电力, 2011, 24(11): 6
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.